Carleman estimates and boundedness of associated multiplier operators

被引:3
|
作者
Jeong, Eunhee [1 ,2 ]
Kwon, Yehyun [3 ]
Lee, Sanghyuk [4 ]
机构
[1] Jeonbuk Natl Univ, Dept Math Educ, Jeonju, South Korea
[2] Jeonbuk Natl Univ, Inst Pure & Appl Math, Jeonju, South Korea
[3] Korea Inst Adv Study, Sch Math, Seoul 02455, South Korea
[4] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
关键词
Carleman estimate; unique continuation; UNIFORM SOBOLEV INEQUALITIES; BOCHNER-RIESZ OPERATORS; UNIQUE CONTINUATION; OSCILLATORY INTEGRALS; NEGATIVE INDEX; DIRAC; THEOREM; ORDER;
D O I
10.1080/03605302.2021.2007532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P(D) be the Laplacian Delta, or the wave operator square. The following type of Carleman estimate is known to be true on a certain range of p, q: parallel to e(v.x)u parallel to(Lq(Rd)) <= C parallel to e(v.x)P(D)u parallel to(Lp(Rd)) with C independent of v is an element of R-d. The estimates are consequences of the uniform Sobolev type estimates for second order differential operators due to Kenig-Ruiz-Sogge [1] and Jeong-Kwon-Lee [2]. The range of p, q for which the uniform Sobolev type estimates hold was completely characterized for the second order differential operators with nondegenerate principal part. But the optimal range of p, q for which the Carleman estimate holds has not been clarified before. When P(D) = Delta, square, or the heat operator, we obtain a complete characterization of the admissible p, q for the aforementioned type of Carleman estimate. For this purpose we investigate L-p-L-q boundedness of related multiplier operators. As applications, we also obtain some unique continuation results.
引用
收藏
页码:774 / 796
页数:23
相关论文
共 50 条
  • [1] CARLEMAN ESTIMATES FOR ANISOTROPIC ELLIPTIC OPERATORS WITH JUMPS AT AN INTERFACE
    Le Rousseau, Jerome
    Lerner, Nicolas
    ANALYSIS & PDE, 2013, 6 (07): : 1601 - 1647
  • [2] Carleman estimates and inverse problems for Dirac operators
    Mikko Salo
    Leo Tzou
    Mathematische Annalen, 2009, 344 : 161 - 184
  • [3] Carleman estimates and inverse problems for Dirac operators
    Salo, Mikko
    Tzou, Leo
    MATHEMATISCHE ANNALEN, 2009, 344 (01) : 161 - 184
  • [4] Carleman inequalities and unique continuation for the polyharmonic operators
    Jeong, Eunhee
    Kwon, Yehyun
    Lee, Sanghyuk
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 385 : 86 - 120
  • [5] Carleman inequalities and unique continuation for the polyharmonic operators
    Jeong, Eunhee
    Kwon, Yehyun
    Lee, Sanghyuk
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 385 : 86 - 120
  • [6] Global Carleman Estimates for Degenerate Parabolic Operators with Applications Introduction
    Cannarsa, P.
    Martinez, P.
    Vancostenoble, J.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 239 (1133) : 1 - +
  • [7] Carleman estimates for elliptic operators with complex coefficients. Part II: Transmission problems
    Bellassoued, Mourad
    Le Rousseau, Jerome
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 115 : 127 - 186
  • [8] CARLEMAN ESTIMATES AND UNIQUE CONTINUATION PROPERTY FOR ELLIPTIC OPERATORS IN BANACH SPACES
    Shakhmurov, Veli B.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (03): : 873 - 885
  • [9] Carleman estimates for elliptic operators with complex coefficients. Part I: Boundary value problems
    Bellassoued, Mourad
    Le Rousseau, Jerome
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (04): : 657 - 728
  • [10] On Carleman Estimates with Two Large Parameters
    Le Rousseau, Jerome
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (01) : 55 - 113