Exponential sums of squares of Fourier coefficients of cusp forms

被引:2
作者
Acharya, Ratnadeep [1 ]
机构
[1] Ramakrishna Mission Vivekananda Univ, Howrah 711202, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2020年 / 130卷 / 01期
关键词
Cusp forms; exponential sums; diophantine approximation;
D O I
10.1007/s12044-019-0550-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove nontrivial estimates for linear sums of squares of Fourier coefficients of holomorphic and Maass cusp forms twisted by additive characters. For holomorphic forms f, we show that if vertical bar alpha - a/q vertical bar <= 1/q(2) with (a, q) = 1, then for any epsilon > 0, Sigma(n <= X) (lambda)f(()n)(2)e(n alpha) <<(f,epsilon) X4/5+epsilon for X-1/5 << q << X-4/5. Moreover, for any epsilon > 0, there exists a set S subset of (0, 1) with mu(S) = 1 such that for every alpha epsilon S, there exists X-0 = X-0(alpha) such that the above inequality holds true for any alpha epsilon S and X >= X-0(alpha). A weaker bound for Maass cusp forms is also established.
引用
收藏
页数:7
相关论文
共 8 条
[1]  
Deligne P, 1974, PUBL MATH-PARIS, V43, P273
[2]   Strong orthogonality between the Mobius function, additive characters and Fourier coefficients of cusp forms [J].
Fouvry, Etienne ;
Ganguly, Satadal .
COMPOSITIO MATHEMATICA, 2014, 150 (05) :763-797
[3]  
IWANIEC H, 2004, AM MATH SOC C PUBLIC, V53
[4]   Functoriality for the exterior square of GL4 and the symmetric fourth of GL2 [J].
Kim, HH ;
Ramakrishnan, D ;
Sarnak, P .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) :139-183
[5]  
Levy P., 1936, Compos. Math., V3, P286
[6]   Cancellation in additively twisted sums on GL(n) [J].
Miller, Stephen D. .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (03) :699-729
[7]   Contributions to the theory of Ramanujan's function tau-(n) and similar arithmetical functions II. The order of the fourier coefficients of integral modular forms [J].
Rankin, RA ;
Hardy, GH .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1939, 35 :357-372
[8]  
Selberg A., 1940, Arch. Math. Naturvid, V43, P47