High-performance alkaline water electrolysis using Aemion™ anion exchange membranes

被引:192
作者
Fortin, Patrick [1 ]
Khoza, Thulile [2 ]
Cao, Xinzhi [1 ]
Martinsen, Stig Yngve [2 ]
Barnett, Alejandro Oyarce [2 ,3 ]
Holdcroft, Steven [1 ]
机构
[1] Simon Fraser Univ, Dept Chem, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
[2] SINTEF Ind, New Energy Solut, Sem Saelands Vei 12, N-7034 Trondheim, Norway
[3] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, NO-7491 Trondheim, Norway
基金
加拿大自然科学与工程研究理事会;
关键词
Anion exchange membranes; Electrolysis; Electrochemistry; Hydrocarbon ionomer; HYDROGEN-PRODUCTION; FUEL-CELLS; PEM ELECTROLYSIS; LOW-COST; CONDUCTIVITY; POLYMER; VISUALIZATION; TECHNOLOGIES; EFFICIENCY; TRANSPORT;
D O I
10.1016/j.jpowsour.2020.227814
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the use of all-hydrocarbon anion exchange membranes capable of achieving high current densities through the optimization of MEA fabrication and operating conditions. The electrochemical behaviour of commercially-available Aemion (TM) anion exchange membranes with various ion-exchange capacities and thicknesses is investigated, and the impact of these properties on electrolyzer performance and short-term stability are discussed. The hydrocarbon anion exchange membrane. AF1-HNN8-50, having an ion exchange capacity of 2.1-2.5 meq OH- g(-1) and a thickness of 50 was able to achieve current densities of 2 A cm(-2) at a potential of 1.82 V using 1 M KOH at 60 degrees C.
引用
收藏
页数:11
相关论文
共 56 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]   Anion Exchange Membranes' Evolution toward High Hydroxide Ion Conductivity and Alkaline Resiliency [J].
Arges, Christopher G. ;
Zhang, Le .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (07) :2991-3012
[3]   Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources [J].
Arico, A. S. ;
Siracusano, S. ;
Briguglio, N. ;
Baglio, V. ;
Di Blasi, A. ;
Antonucci, V. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (02) :107-118
[4]   Research Advances Towards Low Cost, High Efficiency PEM Electrolysis [J].
Ayers, K. E. ;
Anderson, E. B. ;
Capuano, C. B. ;
Carter, B. D. ;
Dalton, L. T. ;
Hanlon, G. ;
Manco, J. ;
Niedzwiecki, M. .
POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01) :3-15
[5]   PEM electrolysis for production of hydrogen from renewable energy sources [J].
Barbir, F .
SOLAR ENERGY, 2005, 78 (05) :661-669
[6]   Visualization of Hydroxide Ion Formation upon Electrolytic Water Splitting in an Anion Exchange Membrane [J].
Cao, Xinzhi ;
Novitski, David ;
Holdcroft, Steven .
ACS MATERIALS LETTERS, 2019, 1 (03) :362-366
[7]   A quaternary ammonium grafted poly vinyl benzyl chloride membrane for alkaline anion exchange membrane water electrolysers with no-noble-metal catalysts [J].
Cao, Yuan-Cheng ;
Wu, Xu ;
Scott, Keith .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (12) :9524-9528
[8]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[9]   Hydroxide Solvation and Transport in Anion Exchange Membranes [J].
Chen, Chen ;
Tse, Ying-Lung Steve ;
Lindberg, Gerrick E. ;
Knight, Chris ;
Voth, Gregory A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (03) :991-1000
[10]   Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content [J].
Cho, Min Kyung ;
Park, Hee-Young ;
Lee, Hye Jin ;
Kim, Hyoung-Juhn ;
Lim, Ahyoun ;
Henkensmeier, Dirk ;
Yoo, Sung Jong ;
Kim, Jin Young ;
Lee, So Young ;
Park, Hyun S. ;
Jang, Jong Hyun .
JOURNAL OF POWER SOURCES, 2018, 382 :22-29