Sequence Analysis-based Hyper-heuristics for Water Distribution Network Optimisation

被引:10
|
作者
Kheiri, Ahmed [1 ]
Keedwell, Edward [1 ]
Gibson, Michael J. [1 ]
Savic, Dragan [1 ]
机构
[1] Univ Exeter, Coll Engn Math & Phys Sci, North Pk Rd, Exeter EX4 4QF, Devon, England
来源
COMPUTING AND CONTROL FOR THE WATER INDUSTRY (CCWI2015): SHARING THE BEST PRACTICE IN WATER MANAGEMENT | 2015年 / 119卷
基金
英国工程与自然科学研究理事会;
关键词
Hyper-heuristic; Water Distribution Network; Hidden Markov Model; DESIGN; SYSTEMS;
D O I
10.1016/j.proeng.2015.08.993
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Hyper-heuristics operate at the level above traditional (meta-)heuristics that 'optimise the optimiser'. These algorithms can combine low level heuristics to create bespoke algorithms for particular classes of problems. The low level heuristics can be mutation operators or hill climbing algorithms and can include industry expertise. This paper investigates the use of a new hyperheuristic based on sequence analysis in the biosciences, to develop new optimisers that can outperform conventional evolutionary approaches. It demonstrates that the new algorithms develop high quality solutions on benchmark water distribution network optimisation problems efficiently, and can yield important information about the problem search space. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1269 / 1277
页数:9
相关论文
共 50 条
  • [1] Hyper-Heuristics to customise metaheuristics for continuous optimisation
    Cruz-Duarte, Jorge M.
    Amaya, Ivan
    Ortiz-Bayliss, Jose C.
    Conant-Pablos, Santiago E.
    Terashima-Marin, Hugo
    Shi, Yong
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 66
  • [2] A comprehensive analysis of hyper-heuristics
    Ozcan, Ender
    Bilgin, Burak
    Korkmaz, Emin Erkan
    INTELLIGENT DATA ANALYSIS, 2008, 12 (01) : 3 - 23
  • [3] Public transport network optimisation in PTV Visum using selection hyper-heuristics
    Heyken Soares, Philipp
    Ahmed, Leena
    Mao, Yong
    Mumford, Christine L.
    PUBLIC TRANSPORT, 2021, 13 (01) : 163 - 196
  • [4] A Primary Study on Hyper-Heuristics to Customise Metaheuristics for Continuous Optimisation
    Cruz-Duarte, Jorge M.
    Amaya, Ivan
    Carlos Ortiz-Bayliss, Jose
    Enrique Conant-Pablos, Santiago
    Terashima-Marin, Hugo
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [5] Global Optimisation through Hyper-Heuristics: Unfolding Population-Based Metaheuristics
    Cruz-Duarte, Jorge M.
    Ortiz-Bayliss, Jose C.
    Amaya, Ivan
    Pillay, Nelishia
    APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [6] LANDSCAPE ANALYSIS OF SIMPLE PERTURBATIVE HYPER-HEURISTICS
    Maden, Ibrahim
    Uyar, Sima
    Ozcan, Ender
    MENDELL 2009, 2009, : 16 - 22
  • [7] Hybridisation of Evolutionary Algorithms Through Hyper-heuristics for Global Continuous Optimisation
    Segredo, Eduardo
    Lalla-Ruiz, Eduardo
    Hart, Emma
    Paechter, Ben
    Voss, Stefan
    LEARNING AND INTELLIGENT OPTIMIZATION (LION 10), 2016, 10079 : 296 - 305
  • [8] A Parameter-Based Analysis of Ant-Based Generation Hyper-Heuristics
    Singh, Emilio
    Pillay, Nelishia
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 812 - 819
  • [9] Choice function based hyper-heuristics for multi-objective optimization
    Maashi, Mashael
    Kendall, Graham
    Oezcan, Ender
    APPLIED SOFT COMPUTING, 2015, 28 : 312 - 326
  • [10] Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation
    Li, Wenwen
    Ozcan, Ender
    John, Robert
    RENEWABLE ENERGY, 2017, 105 : 473 - 482