Error Exponents for Asynchronous Multiple Access Channels, Controlled Asynchronism May Outperform Synchronism

被引:1
作者
Csiszar, Imre [1 ]
Farkas, Lorant [2 ]
Koi, Tamas [3 ]
机构
[1] Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Anal, H-1111 Budapest, Hungary
[3] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, H-1111 Budapest, Hungary
关键词
Decoding; Entropy; Codes; Reliability; Delays; Encoding; Tools; Asynchronous multiple access; error exponents; method of subtypes; packing lemma; universal coding; CAPACITY REGION;
D O I
10.1109/TIT.2021.3115252
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Exponential error bounds achievable by universal coding and decoding are derived for frame-asynchronous discrete memoryless multiple access channels with two senders, via the method of subtypes, a refinement of the method of types. An empirical entropy decoder is employed. A key tool is an improved packing lemma, that overcomes the technical difficulty caused by codeword repetitions via an induction based new argument. The asymptotic form of the bounds admits numerical evaluation. This demonstrates that error exponents achievable by synchronous transmission can be superseded via controlled asynchronism, i.e. a deliberate shift of the codewords.
引用
收藏
页码:7684 / 7707
页数:24
相关论文
共 35 条
[1]  
[Anonymous], 2011, INFORM THEORY CODING, DOI DOI 10.1017/CBO9780511921889
[2]  
[Anonymous], 1971, PROC 2 INT S INFORM
[3]  
Arutyunyan E. A., 1975, Problems of Information Transmission, V11, P113
[4]   CAPACITY REGION OF THE MULTIPLE-ACCESS CHANNEL [J].
BIERBAUM, M ;
WALLMEIER, HM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (04) :484-484
[5]  
Csiszar I., 1980, Problems of Control and Information Theory, V9, P315
[6]   The method of types [J].
Csiszar, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) :2505-2523
[7]  
Emoto T, 2018, PROCEEDINGS OF 2018 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2018), P291, DOI 10.23919/ISITA.2018.8664385
[8]  
Farkas Lorant, 2017, 2017 IEEE International Symposium on Information Theory (ISIT), P3145, DOI 10.1109/ISIT.2017.8007109
[9]  
Farkas L, 2020, INT SYM INF THEOR AP, P46
[10]  
Farkas L, 2019, IEEE INT SYMP INFO, P2664, DOI [10.1109/ISIT.2019.8849722, 10.1109/isit.2019.8849722]