Anytime Bi-Objective Optimization with a Hybrid Multi-Objective CMA-ES (HMO-CMA-ES)

被引:6
|
作者
Loshchilov, Ilya [1 ]
Glasmachers, Tobias [2 ]
机构
[1] Univ Freiburg, Freiburg, Germany
[2] Ruhr Univ Bochum, Inst Neuroinformat, Bochum, Germany
来源
PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION) | 2016年
关键词
Benchmarking; Black-box optimization; Bi-objective optimization;
D O I
10.1145/2908961.2931698
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a multi-objective optimization algorithm aimed at achieving good anytime performance over a wide range of problems. Performance is assessed in terms of the hyper volume metric. The algorithm called HMO-CMA-ES represents a hybrid of several old and new variants of CMA-ES, complemented by BOBYQA as a warm start. We benchmark HMO-CMA-ES on the recently introduced bi-objective problem suite of the COCO framework (COmparing Continuous Optimizers), consisting of 55 scalable continuous optimization problems, which is used by the Black-Box Optimization Benchmarking (BBOB) Workshop 2016.
引用
收藏
页码:1169 / 1176
页数:8
相关论文
共 50 条
  • [1] Active Covariance Matrix Adaptation for multi-objective CMA-ES
    Krimpmann, Christoph
    Braun, Jan
    Hoffmann, Frank
    Bertram, Torsten
    2013 SIXTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2013, : 189 - 194
  • [2] Investigation of Strategies for an Increasing Population Size in Multi-objective CMA-ES
    Limmer, Steffen
    Fey, Dietmar
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 476 - 483
  • [3] Multi-objective optimization of permanent magnet motors using deep learning and CMA-ES
    Mikami, Ryosuke
    Sato, Hayaho
    Hayashi, Shogo
    Igarashi, Hajime
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2023, 73 (04) : 255 - 264
  • [4] Transfer weight functions for injecting problem information in the multi-objective CMA-ES
    Olacir R. Castro
    Aurora Pozo
    Jose A. Lozano
    Roberto Santana
    Memetic Computing, 2017, 9 : 153 - 180
  • [5] Transfer weight functions for injecting problem information in the multi-objective CMA-ES
    Castro, Olacir R., Jr.
    Pozo, Aurora
    Lozano, Jose A.
    Santana, Roberto
    MEMETIC COMPUTING, 2017, 9 (02) : 153 - 180
  • [6] Combining CMA-ES and MOEA/DD for many-objective optimization
    Castro, Olacir R., Jr.
    Lozano, Jose A.
    Santana, Roberto
    Pozo, Aurora
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 1451 - 1458
  • [7] Benchmarking MO-CMA-ES and COMO-CMA-ES on the Bi-objective bbob-biobj Testbed
    Dufosse, Paul
    Toure, Cheikh
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 1920 - 1927
  • [8] Hybrid of PSO and CMA-ES for Global Optimization
    Xu, Peilan
    Luo, Wenjian
    Lin, Xin
    Qiao, Yingying
    Zhu, Tao
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 27 - 33
  • [9] CMA-ES for Safe Optimization
    Uchida, Kento
    Hamano, Ryoki
    Nomura, Masahiro
    Saito, Shota
    Shirakawa, Shinichi
    PROCEEDINGS OF THE 2024 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2024, 2024, : 722 - 730
  • [10] Steady-state selection and efficient covariance matrix update in the multi-objective CMA-ES
    Igel, Christian
    Suttorp, Thorsten
    Hansen, Nikolaus
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 171 - +