Effects of Classical and Neo-classical Cross-field Transport of Tungsten Impurity in Realistic Tokamak Geometry

被引:3
作者
Yamoto, S. [1 ]
Homma, Y. [2 ]
Inoue, H. [1 ]
Sawada, Y. [1 ]
Hoshino, K. [2 ]
Hatayama, A. [1 ]
Bonnin, X. [3 ]
Coster, D. [4 ]
Schneider, R. [5 ]
机构
[1] Keio Univ, Fac Sci & Technol, Yokohama, Kanagawa 2238522, Japan
[2] Japan Atom Energy Agcy, Rokkasho, Aomori 0393212, Japan
[3] ITER Org, Route Vinon Verdon, F-13067 St Paul Les Durance, France
[4] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[5] Ernst Moritz Arndt Univ Greifswald, Felix Hausdorff Str 6, D-17487 Greifswald, Germany
关键词
SOL; impurity; tungsten; simulation; BINARY COLLISION MODEL; PLASMA; SIMULATION;
D O I
10.1002/ctpp.201610068
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The initial simulation study of the neoclassical perpendicular self-diffusion transport in the SOL/Divertor regions for a realistic tokamak geometry with the IMPGYRO code has been performed in this paper. One of the most unique features of the IMPGYRO code is calculating exact Larmor orbit of the test particle instead of assuming guiding center approximation. Therefore, effects of the magnetic drifts in realistic tokamaks are naturally taken into account in the IMPGYRO code. This feature makes it possible to calculate neoclassical transport processes, which possibly become large in the SOL/divertor plasma. Indeed, neoclassical self-diffusion process, the resultant effect of the combination of magnetic drift and Coulomb collisions with background ions, has already been included in the IMPGYRO model. In the present paper, prior to implementing the detailed model of neoclassical transport process into IMPGYRO, we have investigated the effect of neoclassical selfdiffusion in a realistic tokamak geometry with lower single null X-point. We also use a model with guiding center approximation in order to compare with the IMPGYRO full orbit model. The preliminary calculation results of each model have shown differences in the perpendicular average velocity of impurity ions at the top region of the SOL. The mechanism which leads to the difference has been discussed. ((c) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
引用
收藏
页码:646 / 650
页数:5
相关论文
共 15 条
[1]   Modeling of multi-dimensional impurity transport in a realistic tokamak geometry [J].
Fukano, A. ;
Noritake, A. ;
Hoshino, K. ;
Yamazaki, R. ;
Hatayama, A. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (211-215) :211-215
[2]   High Mach flow associated with X point MARFE and plasma detachment [J].
Hatayama, A ;
Segawa, H ;
Schneider, R ;
Coster, DP ;
Hayashi, N ;
Sakurai, S ;
Asakura, N ;
Ogasawara, M .
NUCLEAR FUSION, 2000, 40 (12) :2009-2021
[3]   NEOCLASSICAL TRANSPORT OF IMPURITIES IN TOKAMAK PLASMAS [J].
HIRSHMAN, SP ;
SIGMAR, DJ .
NUCLEAR FUSION, 1981, 21 (09) :1079-1201
[4]  
Homma Y., 2014, P 25 IAEA FUS EN C S
[5]   Numerical modeling of the thermal force in a plasma for test-ion transport simulation based on a Monte Carlo Binary Collision Model (II) - Thermal forces due to temperature gradients parallel and perpendicular to the magnetic field [J].
Homma, Yuki ;
Hatayama, Akiyoshi .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 :206-223
[6]   Tungsten as target material in fusion devices [J].
Naujoks, D ;
Asmussen, K ;
BessenrodtWeberpals, M ;
Deschka, S ;
Dux, R ;
Engelhardt, W ;
Field, AR ;
Fussmann, G ;
Fuchs, JC ;
GarciaRosales, C ;
Hirsch, S ;
Ignacz, P ;
Lieder, G ;
Mast, KF ;
Neu, R ;
Radtke, R ;
Roth, J ;
Wenzel, U .
NUCLEAR FUSION, 1996, 36 (06) :671-687
[7]   Improved kinetic test particle model for impurity transport in tokamaks [J].
Reiser, D ;
Reiter, D ;
Tokar, MZ .
NUCLEAR FUSION, 1998, 38 (02) :165-177
[8]  
Sawada Y., 2012, T FUSION SCI TECHNOL, V63, P352
[9]   Plasma edge physics with B2-Eirene [J].
Schneider, R ;
Bonnin, X ;
Borrass, K ;
Coster, DP ;
Kastelewicz, H ;
Reiter, A ;
Rozhansky, VA ;
Braams, BJ .
CONTRIBUTIONS TO PLASMA PHYSICS, 2006, 46 (1-2) :3-191
[10]  
Shimizu K, 1997, J NUCL MATER, V241, P167, DOI 10.1016/S0022-3115(97)80038-4