EIGENVALUES FOR A FOURTH ORDER ELLIPTIC PROBLEM

被引:0
作者
Kong, Lingju [1 ]
机构
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
关键词
Critical points; p(x)-biharmonic operator; eigenvalues; weak solutions; Ekeland's variational principle; P(X)-LAPLACIAN; MULTIPLICITY; SPACES; EXISTENCE; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the fourth order nonlinear eigenvalue problem with a p(x)-biharmonic operator {Delta(2)(p(x))u + a(x)vertical bar u vertical bar p((x)-2)u = lambda w(x)f(u) in Omega, u = Delta u = 0 on partial derivative Omega where Omega is a smooth bounded domain in R-N, p is an element of C((Omega) over bar) with p(x) > 1 on (Omega) over barO, Delta(2)(p(x)) u - Delta(vertical bar Delta u vertical bar(p(x)-2 Delta)u) is the p(x)-biharmonic operator, and lambda > 0 is a parameter. Under some appropriate conditions on the functions p, a, w, f, we prove that there exists (lambda) over bar > 0 such that any lambda is an element of (0,(lambda) over bar) is an eigenvalue of the above problem. Our analysis mainly relies on variational arguments based on Ekeland's variational principle and some recent theory on the generalized Lebesgue-Sobolev spaces L-p(x)(Omega) and W-k,W-p(x)(Omega).
引用
收藏
页码:249 / 258
页数:10
相关论文
共 23 条
[1]  
[Anonymous], 2011, ELECT J DIFFER EQU
[2]  
[Anonymous], LECT NOTES MATH
[3]  
[Anonymous], APPL MATH SCI
[4]   On the spectrum of a fourth order elliptic equation with variable exponent [J].
Ayoujil, A. ;
El Amrouss, A. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4916-4926
[5]   Estimates of the principal eigenvalue of the p-biharmonic operator [J].
Benedikt, Jiri ;
Drabek, Pavel .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) :5374-5379
[6]   Sobolev embeddings with variable exponent [J].
Edmunds, DE ;
Rákosník, J .
STUDIA MATHEMATICA, 2000, 143 (03) :267-293
[7]   Existence of solutions for a boundary problem involving p(x)-biharmonic operator [J].
El Amrouss, Abdel Rachid ;
Ourraoui, Anass .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2013, 31 (01) :179-192
[8]   Remarks on Ricceri's variational principle and applications to the p(x)-Laplacian equations [J].
Fan, Xianling ;
Deng, Shao-Gao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (11) :3064-3075
[9]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[10]   Existence and multiplicity of solutions for p(x)-Laplacian equations in RN [J].
Fan, XL ;
Han, XY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (1-2) :173-188