Visual and quantitative evaluation of microcalcifications in mammograms with deep learning-based super-resolution

被引:3
|
作者
Honjo, Takashi [1 ,2 ]
Ueda, Daiju [2 ,3 ]
Katayama, Yutaka [4 ]
Shimazaki, Akitoshi [2 ]
Jogo, Atsushi [2 ]
Kageyama, Ken [2 ]
Murai, Kazuki [2 ]
Tatekawa, Hiroyuki [2 ]
Fukumoto, Shinya [5 ]
Yamamoto, Akira [2 ]
Miki, Yukio [2 ]
机构
[1] Osaka City Univ, Grad Sch Med, Dept Diagnost & Intervent Radiol, Osaka, Japan
[2] Osaka Metropolitan Univ, Grad Sch Med, Dept Diagnost & Intervent Radiol, Osaka, Japan
[3] Osaka Metropolitan Univ, Ctr Hlth Sci Innovat, Smart Life Sci Lab, Osaka, Japan
[4] Osaka Metropolitan Univ Hosp, Dept Radiol, Osaka, Japan
[5] Osaka Metropolitan Univ, Grad Sch Med, Dept Premier Prevent Med, Osaka, Japan
基金
日本学术振兴会;
关键词
Breast Cancer; Mammography; Microcalcification; Deep Learning; Artificial Intelligence; Super Resolution; BREAST;
D O I
10.1016/j.ejrad.2022.110433
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To evaluate visually and quantitatively the performance of a deep-learning-based super-resolution (SR) model for microcalcifications in digital mammography. Method: Mammograms were consecutively collected from 5080 patients who underwent breast cancer screening from January 2015 to March 2017. Of these, 93 patients (136 breasts, mean age, 50 +/- 7 years) had microcalcifications in their breasts on mammograms. We applied an artificial intelligence model known as a fast SR convolutional neural network to the mammograms. SR and original mammograms were visually evaluated by four breast radiologists using a 5-point scale (1: original mammograms are strongly preferred, 5: SR mammograms are strongly preferred) for the detection, diagnostic quality, contrast, sharpness, and noise of microcalcifications. Mammograms were quantitatively evaluated using a perception-based image-quality evaluator (PIQE). Results: All radiologists rated the SR mammograms better than the original ones in terms of detection, diagnostic quality, contrast, and sharpness of microcalcifications. These ratings were significantly different according to the Wilcoxon signed-rank test (p <.001), while the noise score of the three radiologists was significantly lower (p <.001). According to PIQE, SR mammograms were rated better than the original mammograms, showing a significant difference by paired t-test (p <.001). Conclusion: An SR model based on deep learning can improve the visibility of microcalcifications in mammography and help detect and diagnose them in mammograms.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Deep learning-based image super-resolution considering quantitative and perceptual quality
    Choi, Jun-Ho
    Kim, Jun-Hyuk
    Cheon, Manri
    Lee, Jong-Seok
    NEUROCOMPUTING, 2020, 398 (398) : 347 - 359
  • [2] Deep Learning-based Face Super-resolution: A Survey
    Jiang, Junjun
    Wang, Chenyang
    Liu, Xianming
    Ma, Jiayi
    ACM COMPUTING SURVEYS, 2023, 55 (01)
  • [3] Deep learning-based super-resolution in coherent imaging systems
    Liu, Tairan
    de Haan, Kevin
    Rivenson, Yair
    Wei, Zhensong
    Zeng, Xin
    Zhang, Yibo
    Ozcan, Aydogan
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] Volumetric Isosurface Rendering with Deep Learning-Based Super-Resolution
    Weiss, Sebastian
    Chu, Mengyu
    Thuerey, Nils
    Westermann, Rudiger
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (06) : 3064 - 3078
  • [5] Deep learning-based super-resolution in coherent imaging systems
    Tairan Liu
    Kevin de Haan
    Yair Rivenson
    Zhensong Wei
    Xin Zeng
    Yibo Zhang
    Aydogan Ozcan
    Scientific Reports, 9
  • [6] ROBUST LEARNING-BASED SUPER-RESOLUTION
    Kim, Changhyun
    Choi, Kyuha
    Lee, Ho-young
    Hwang, Kyuyoung
    Ra, Jong Beom
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 2017 - 2020
  • [7] Limitations of Learning-Based Super-Resolution
    Shoji, Hiroki
    Gohshi, Seiichi
    2015 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2015, : 646 - 651
  • [8] Super-sampling by learning-based super-resolution
    Du, Ping
    Zhang, Jinhuan
    Long, Jun
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2020, 21 (02) : 249 - 257
  • [9] IMPACT OF DEEP LEARNING-BASED SUPER-RESOLUTION ON BUILDING FOOTPRINT EXTRACTION
    He, H.
    Gao, K.
    Tan, W.
    Wang, L.
    Fatholahi, S. N.
    Chen, N.
    Chapman, M. A.
    Li, J.
    XXIV ISPRS CONGRESS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION I, 2022, 43-B1 : 31 - 37
  • [10] Deep Learning-Based Super-Resolution Applied to Dental Computed Tomography
    Hatvani, Janka
    Horvath, Andras
    Michetti, Jerome
    Basarab, Adrian
    Kouame, Denis
    Gyongy, Miklos
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) : 120 - 128