APPLICATIONS OF ITERATED LOGARITHM FUNCTIONS ON TIME SCALES TO RIEMANN-WEBER-TYPE EQUATIONS

被引:2
作者
Ito, Baku [1 ]
Rehak, Pavel [2 ]
Yamaoka, Naoto [1 ]
机构
[1] Osaka Prefecture Univ, Dept Math Sci, Sakai, Osaka 5998531, Japan
[2] Brno Univ Technol, Inst Math, FME, Tech 2, CZ-61669 Brno, Czech Republic
关键词
Time scales calculus; iterated logarithm functions; Euler-type equations; Riemann-Weber-type equations; oscillation; oscillation constant; EULER; OSCILLATION;
D O I
10.1090/proc/14812
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to give general solutions of second-order linear dynamic equations on time scales, which are related to Riemann-Weber-type differential equations. The general solutions naturally include iterated logarithm functions on time scales. Using their properties, we obtain complete information on oscillation for the equations, which are important for comparison purposes.
引用
收藏
页码:1611 / 1624
页数:14
相关论文
共 12 条
[1]   The logarithm on time scales [J].
Bohner, M .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (15) :1305-1306
[2]  
Bohner M., 2001, Dynamic Equations On Time Scales
[3]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
[4]  
Bohner Martin, 2016, MULTIVARIABLE DYNAMI
[5]   NON-OSCILLATION THEOREMS [J].
HILLE, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 64 (SEP) :234-252
[6]  
Hongyo A, 2017, OPUSC MATH, V37, P389, DOI 10.7494/OpMath.2017.37.3.389
[7]  
Huff S, 2003, DISCRETE CONT DYN-A, P423
[8]  
Rehak P., SPRINGER P MATH STAT
[10]   Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales [J].
Rehak, Pavel ;
Yamaoka, Naoto .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (11) :1884-1900