MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel

被引:0
|
作者
Lesieur, Thibault [3 ,4 ]
Krzakala, Florent [1 ,2 ]
Zdeborova, Lenka [3 ,4 ]
机构
[1] Ecole Normale Super, LPS, Paris, France
[2] Ecole Normale Super, CNRS, Paris, France
[3] CEA Saclay, IPhT, F-91191 Gif Sur Yvette, France
[4] CNRS, F-91191 Gif Sur Yvette, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers probabilistic estimation of a low-rank matrix from non-linear element-wise measurements of its elements. We derive the corresponding approximate message passing (AMP) algorithm and its state evolution. Relying on non-rigorous but standard assumptions motivated by statistical physics, we characterize the minimum mean squared error (MMSE) achievable information theoretically and with the AMP algorithm. Unlike in related problems of linear estimation, in the present setting the MMSE depends on the output channel only trough a single parameter - its Fisher information. We illustrate this striking finding by analysis of submatrix localization, and of detection of communities hidden in a dense stochastic block model. For this example we locate the computational and statistical boundaries that are not equal for rank larger than four.
引用
收藏
页码:680 / 687
页数:8
相关论文
共 50 条
  • [41] A Unified Computational and Statistical Framework for Nonconvex Low-Rank Matrix Estimation
    Wang, Lingxiao
    Zhang, Xiao
    Gu, Quanquan
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 981 - 990
  • [42] Sample Efficient Reinforcement Learning via Low-Rank Matrix Estimation
    Shah, Devavrat
    Song, Dogyoon
    Xu, Zhi
    Yang, Yuzhe
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [43] Sparse and Low-Rank Decomposition of Covariance Matrix for Efficient DOA Estimation
    Chen, Yong
    Wang, Fang
    Wan, Jianwei
    Xu, Ke
    2017 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2017, : 957 - 961
  • [44] Fast Low-Rank Matrix Estimation for Ill-Conditioned Matrices
    Soltani, Mohammadreza
    Hegde, Chinmay
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 371 - 375
  • [45] Stable Autoencoding: A Flexible Framework for Regularized Low-Rank Matrix Estimation
    Josse, Julie
    Wager, Stefan
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2406 - 2406
  • [46] DOA Estimation of Coherent Sources via Low-Rank Matrix Decomposition
    Yang, Zeqi
    Ma, Shuai
    Liu, Yiheng
    Zhang, Hua
    Lyu, Xiaode
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (11) : 3049 - 3053
  • [47] A variational approach for sparse component estimation and low-rank matrix recovery
    Chen, Zhaofu
    Molina, Rafael
    Katsaggelos, Aggelos K.
    Journal of Communications, 2013, 8 (09): : 600 - 611
  • [48] A structured low-rank matrix pencil for spectral estimation and system identification
    Razavilar, J
    Li, Y
    Liu, KJR
    SIGNAL PROCESSING, 1998, 65 (03) : 363 - 372
  • [49] Low-rank MMSE detector for synchronous DS-CDMA
    Cai, Xiaodong
    Ge, Hongya
    Akansu, Ali N.
    Conference Record of the Asilomar Conference on Signals, Systems and Computers, 1999, 2 : 940 - 944
  • [50] A Converse to Low-Rank Matrix Completion
    Pimentel-Alarcon, Daniel L.
    Nowak, Robert D.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 96 - 100