A priori estimate for boundary layer thickness via viscosity solution

被引:0
作者
Do Nascimento, AS [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
关键词
viscosity solution; boundary layer; radially symmetric solution;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a viscosity solution approach in order to estimate the boundary layer thickness of radially symmetric solutions of a semilinear elliptic equation with Dirichlet boundary condition. In particular the estimates show how the boundary layer thickness depends on meaningful parameters appearing in the equation, namely the diffusivity and a source term.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 13 条
[1]  
BARDI M, 1990, COMMUN PART DIFF EQ, V15, P1649
[2]   COMPARISON PRINCIPLE FOR DIRICHLET-TYPE HAMILTON-JACOBI EQUATIONS AND SINGULAR PERTURBATIONS OF DEGENERATED ELLIPTIC-EQUATIONS [J].
BARLES, G ;
PERTHAME, B .
APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 21 (01) :21-44
[3]  
CLEMENT P, 1987, ANN SCUOLA NORMALI S, V14
[4]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[5]  
DESANTI AJ, 1986, J MATH PURE APPL, V65, P227
[6]   BOUNDARY AND INTERIOR SPIKE LAYER FORMATION FOR AN ELLIPTIC EQUATION WITH SYMMETRY [J].
DONASCIMENTO, AS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (02) :466-479
[7]  
FIFE PC, 1973, ARCH RATION MECH AN, V52, P204
[8]   REMARKS ON ELLIPTIC SINGULAR PERTURBATION PROBLEMS [J].
ISHII, H ;
KOIKE, S .
APPLIED MATHEMATICS AND OPTIMIZATION, 1991, 23 (01) :1-15
[9]   SEMILINEAR ELLIPTIC SINGULAR PERTURBATION PROBLEMS WITH NONUNIFORM INTERIOR BEHAVIOR [J].
KELLEY, W ;
KO, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 86 (01) :88-101
[10]  
LIONS PL, 1983, T AMS, V277, P1