Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus

被引:58
作者
Gladiali, Francesca [1 ]
Grossi, Massimo [2 ]
Pacella, Filomena [2 ]
Srikanth, P. N. [3 ]
机构
[1] Univ Sassari, Struttura Dipartimentale Matemat & Fis, I-07100 Sassari, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[3] TIFR Ctr Applicable Math, Bangalore 560065, Karnataka, India
关键词
POSITIVE RADIAL SOLUTIONS; ASYMPTOTIC-BEHAVIOR; UNIQUENESS; EXISTENCE; DOMAINS;
D O I
10.1007/s00526-010-0341-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the problem {-Delta = u(p) + lambda u in A, u > 0 in A, u = 0 on partial derivative A, where A is an annulus of R(N), N >= 2 and p > 1. We prove bifurcation of nonradial solutions from the radial solution in correspondence of a sequence of exponents {p(k)} and for expanding annuli.
引用
收藏
页码:295 / 317
页数:23
相关论文
共 18 条
[1]  
Bartsch T., MATH ANN IN PRESS
[2]   Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli [J].
Byeon, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (01) :136-165
[3]   Nonlinear elliptic equations on expanding symmetric domains [J].
Catrina, F ;
Wang, ZQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (01) :153-181
[4]   Real analyticity and non-degeneracy [J].
Dancer, EN .
MATHEMATISCHE ANNALEN, 2003, 325 (02) :369-392
[5]   Uniqueness of radially symmetric positive solutions for -Δu+u=up in an annulus [J].
Felmer, Patricio ;
Martinez, Salome ;
Tanaka, Kazunaga .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (05) :1198-1209
[6]   Asymptotic behaviour of the Kazdan-Warner solution in the annulus [J].
Grossi, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 223 (01) :96-111
[7]  
Grossi M., 2003, Topol. Methods Nonlinear Anal., V21, P211
[8]  
KATO T, 1995, PERTURBATION THEORY
[9]   EXISTENCE OF MANY POSITIVE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS ON ANNULUS [J].
LI, YY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (02) :348-367