Molecular dynamics simulation of the liquid crystalline semiconductor: 8-TTP-8

被引:0
作者
Yoneya, Makoto [1 ,2 ]
Funahashi, Masahiro [3 ]
Yokoyama, Hiroshi [1 ,2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Nanotechnol Res Inst, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
[2] Japan Sci & Technol Agcy, Liquid Crystal Nanosyst, ERATO SORST, Tsukuba, Ibaraki 3002635, Japan
[3] Univ Tokyo, Sch Engn, Dept Chem & Biotechnol, Tokyo 1138656, Japan
来源
EMERGING LIQUID CRYSTAL TECHNOLOGIES IV | 2009年 / 7232卷
关键词
liquid crystal; organic semiconductor; smectic; rotator phase; molecular simulation; MOBILITY; PHASE;
D O I
10.1117/12.807905
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the structure and dynamics of a liquid crystalline semiconductor dioctylterthiophene system, 8-TTP-8, were examined by molecular dynamics simulations. We especially focus on the melting transition from the crystal to the liquid crystal smectic G phase. Simulations of the rotational autocorrelation function show that the transition is characterized by the onset of rotation around the long molecular axis, while maintaining a hexagonal packing within the smectic layers. This implies that the stepwise decrease of the carrier mobility at the melting transition point may be caused by this rotational disordering. We also found the molecular diffusions (at a rate of D similar to 0.9 x 10-(10)m(2)/s) in the simulated SmG phase. All these characteristics of the simulated SmG phase, including the molecular diffusions, are similar to those of a rotator (plastic crystal) phase.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Debye Process in Ibuprofen Glass-Forming Liquid: Insights from Molecular Dynamics Simulation
    Affouard, F.
    Correia, Natalia T.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (35) : 11397 - 11402
  • [42] Molecular dynamics simulation study on the isomerization and molecular orientation of liquid crystals formed by azobenzene and (1-cyclohexenyl)phenyldiazene
    Xue, Xiang-Gui
    Zhao, Li
    Lu, Zhong-Yuan
    Li, Ming-Hui
    Li, Ze-Sheng
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (25) : 11951 - 11957
  • [43] Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8
    Defei Liu
    Yongbiao Wu
    Qibin Xia
    Zhong Li
    Hongxia Xi
    [J]. Adsorption, 2013, 19 : 25 - 37
  • [44] Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8
    Liu, Defei
    Wu, Yongbiao
    Xia, Qibin
    Li, Zhong
    Xi, Hongxia
    [J]. ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2013, 19 (01): : 25 - 37
  • [45] MOLECULAR-DYNAMICS OF A SMECTIC LIQUID-CRYSTALLINE SIDE-CHAIN COPOLYMER BY DIELECTRIC-RELAXATION SPECTROSCOPY
    ARAKI, K
    [J]. POLYMER JOURNAL, 1990, 22 (06) : 546 - 550
  • [46] Study of molecular dynamics in liquid-crystalline phases of CBOOA by high-resolution 13C NMR
    Hagiwara, Shoko
    Iwama, Yoko
    Fujimori, Hiroki
    [J]. COMPLEX SYSTEMS-BOOK 1, 2008, 982 : 725 - 727
  • [47] Proton Propensity and Orientation of Imidazolium Cation at Liquid Imidazole-Vacuum Interface: A Molecular Dynamics Simulation
    Li, Ailin
    Yan, Tianying
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (19) : 4010 - 4016
  • [48] Rapid prediction of solvation free energy and vapor pressure of liquid and solid from molecular dynamics simulation
    Yang, Li
    Lin, Shiang-Tai
    [J]. AICHE JOURNAL, 2015, 61 (07) : 2298 - 2306
  • [49] Molecular dynamics simulation of supercritical CO2 microemulsion with ionic liquid domains: Structures and properties
    Zhu, Hongyue
    Li, Ying
    Ren, Hongrui
    Zhou, Dan
    Yin, Jianzhong
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2019, 27 (11) : 2653 - 2658
  • [50] Molecular dynamics simulation of supercritical CO2 microemulsion with ionic liquid domains: Structures and properties
    Hongyue Zhu
    Ying Li
    Hongrui Ren
    Dan Zhou
    Jianzhong Yin
    [J]. ChineseJournalofChemicalEngineering, 2019, 27 (11) : 2653 - 2658