Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism

被引:223
作者
Aravind, P [1 ]
Narasimha, M [1 ]
Prasad, V [1 ]
机构
[1] Univ Hyderabad, Sch Life Sci, Dept Plant Sci, Hyderabad 500046, Andhra Pradesh, India
关键词
ascorbate; cadmium; Ceratophyllum demersum; dehydroascorbate; glutathione; oxidative stress; reactive oxygen species; redox status; zinc;
D O I
10.1016/j.plaphy.2005.01.002
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To understand the interaction between Zn, an essential micronutrient and Cd, a non-essential element, Cd-10 mu M and Zn supplemented (10, 50, 100, and 200 mu M) Cd 10 mu M treated Ceratophyllum demersum L. (Coontail), a free floating freshwater macrophyte was chosen for the study. Cadmium at 10 mu M concentration decreased thiol content, enhanced oxidation of ascorbate (AsA) and glutathione (GSH) to dehydroascorbate (DHA) and glutathione disulfide (GSSG), respectively, a clear indication of oxidative stress. Zinc supplementation to Cd (10 mu M) treated plants effectively restored thiols, inhibited oxidation of AsA and GSH maintaining the redox molecules in reduced form. Cd-10 mu M slightly induced ascorbate peroxidase (APX, E.C. 1.11.1.11) but inhibited monodehydroascorbate reductase (MDHAR, E.C. 1.6.5.4), dehydroascorbate reductase (DHAR, E.C. 1.8.5.1) and glutathione reductase (GR, E.C. 1.6.4.2), enzymes of ascorbate-glutathione cycle (AGC). Zn supplementation restored and enhanced the functional activity of all the AGC enzymes (APX, MDHAR, DHAR and GR). gamma-Glutamylcysteine synthetase (gamma-GCS, E.C. 6.3.2.2) was not affected by Cd as well as Zn, but Zn supplements increased glutathione-S-transferase (GST, E.C. 2.5.1.18) activity to a greater extent than Cd and simultaneously restored glutathione peroxidase (GSH-PX, E.C. 1.11.1.9) activity impaired by Cd toxicity. Zn-alone treatments did not change above investigated parameters. These results clearly indicate the protective role of Zn in modulating the redox status of the plant system through the antioxidant pathway AGC and GSH metabolic enzymes for combating Cd induced oxidative stress. (c) 2005 Elsevier SAS. All rights reserved.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 40 条
[1]  
Adriano D.C., 2001, TRACE ELEMENTS TERRE, P866
[2]   Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a freshwater macrophyte [J].
Aravind, P ;
Prasad, MNV .
PLANT SCIENCE, 2004, 166 (05) :1321-1327
[3]   Carbonic anhydrase impairment in cadmium-treated Ceratophyllum demersum L. (free floating freshwater macrophyte):: toxicity reversal by zinc [J].
Aravind, P ;
Prasad, MNV .
JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2004, 19 (01) :52-57
[4]   Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.:: a free floating freshwater macrophyte [J].
Aravind, P ;
Prasad, MNV .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2003, 41 (04) :391-397
[5]  
ARAVIND P, 2004, FREE RADICAL BIO MED, V37, P18
[6]   ASCORBATE PEROXIDASE - A HYDROGEN PEROXIDE-SCAVENGING ENZYME IN PLANTS [J].
ASADA, K .
PHYSIOLOGIA PLANTARUM, 1992, 85 (02) :235-241
[7]   Tansley review No. 111 - Possible roles of zinc in protecting plant cells from damage by reactive oxygen species [J].
Cakmak, I .
NEW PHYTOLOGIST, 2000, 146 (02) :185-205
[8]   Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation [J].
Cuypers, A ;
Vangronsveld, J ;
Clijsters, H .
PHYSIOLOGIA PLANTARUM, 2000, 110 (04) :512-517
[9]   Ascorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: Evidence of an improved detoxification mechanism against reactive oxygen species [J].
De Gara, L ;
Paciolla, C ;
De Tullio, MC ;
Motto, M ;
Arrigoni, O .
PHYSIOLOGIA PLANTARUM, 2000, 109 (01) :7-13
[10]   Dehydroascorbate-reducing proteins in maize are induced by the ascorbate biosynthesis inhibitor lycorine [J].
De Tullio, MC ;
De Gara, L ;
Paciolla, C ;
Arrigoni, O .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 1998, 36 (06) :433-440