Integration of transcriptome and proteome analysis reveals the mechanism of freezing tolerance in winter rapeseed

被引:11
|
作者
Wei, Jiaping [1 ]
Zheng, Guoqiang [1 ]
Dong, Xiaoyun [1 ]
Li, Hui [1 ]
Liu, Sushuang [2 ]
Wang, Ying [1 ]
Liu, Zigang [1 ]
机构
[1] Gansu Agr Univ, Gansu Prov Key Lab Aridland Crop Sci, Lanzhou 730070, Peoples R China
[2] Huzhou Coll, Dept Life Sci & Hlth, Huzhou 313000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Winter rapeseed; Freezing stress; Transcriptome; Proteome; Physiology; Ultrastructure; CBF-INDEPENDENT PATHWAYS; COLD-ACCLIMATION; STRESS TOLERANCE; GENE; PHOSPHORYLATION; REGULATOR; PROTEINS; ROS;
D O I
10.1007/s10725-021-00763-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Winter rapeseed seedlings are susceptible to low temperature during overwintering in Northwest China, leading to reduced crops production. Freezing stress is one of the main environmental stresses in Northwest China from late autumn to early spring, an eventful period for overwinter survival rate of winter rapeseed. However, the molecular mechanism of freezing tolerance formation is still very backward in winter rapeseed. In this study, using a pair of freezing-sensitive and freezing-resistant cultivars NQF24 and NTS57, the exhaustive effects of freezing stress on freezing tolerance formation were evaluated by analyzing leaf at the levels of transcriptome, proteome, physiology and ultrastructure. There were 8497 and 7358 differentially expressed genes (DEGs) and 418 and 573 differentially abundant proteins (DAPs) identified in the leaf of NQF24 and NTS57 under freezing stress, respectively. Function enrichment analysis showed that most of the enriched DEGs and DAPs were associated with plant hormones signal transduction, fatty acid metabolism, ribosome, plant-pathogen interaction and secondary metabolites biosynthesis. Freezing tolerance is formed by enhanced signals transduction, increased the biosynthesis of protein and secondary metabolites, enhanced reactive oxygen species (ROS) scavenging, more osmolytes, lower lipid peroxidation, and stronger cell stability. These results can be taken as selection indicators in freezing tolerance breeding program in rapeseed.
引用
收藏
页码:103 / 118
页数:16
相关论文
共 50 条
  • [1] Integration of transcriptome and proteome analysis reveals the mechanism of freezing tolerance in winter rapeseed
    Jiaping Wei
    Guoqiang Zheng
    Xiaoyun Dong
    Hui Li
    Sushuang Liu
    Ying Wang
    Zigang Liu
    Plant Growth Regulation, 2022, 96 : 103 - 118
  • [2] Integrative Analysis of the Methylome, Transcriptome, and Proteome Reveals a New Mechanism of Rapeseed Under Freezing Stress
    Zheng, Guoqiang
    Liu, Zigang
    Wang, Jinxiong
    Wei, Jiaping
    Dong, Xiaoyun
    Li, Hui
    Wang, Ying
    Tian, Haiyang
    Wu, Zefeng
    Cui, Junmei
    AGRONOMY-BASEL, 2025, 15 (03):
  • [3] Integration of the Physiology, Transcriptome and Proteome Reveals the Molecular Mechanism of Drought Tolerance in Cupressus gigantea
    Lei, Pei
    Liu, Zhi
    Li, Jianxin
    Jin, Guangze
    Xu, Liping
    Ji, Ximei
    Zhao, Xiyang
    Tao, Lei
    Meng, Fanjuan
    FORESTS, 2022, 13 (03):
  • [4] Comparative Transcriptome Analysis Revealed the Freezing Tolerance Signaling Events in Winter Rapeseed (Brassica rapa L.)
    Wu, Wangze
    Yang, Haobo
    Xing, Peng
    Dong, Yun
    Shen, Juan
    Wu, Guofan
    Zheng, Sheng
    Da, Lingling
    He, Jiangtao
    Wu, Yujun
    FRONTIERS IN GENETICS, 2022, 13
  • [5] Integrated methylome and transcriptome analysis unravel the cold tolerance mechanism in winter rapeseed(Brassica napus L.)
    Guoqiang Zheng
    Xiaoyun Dong
    Jiaping Wei
    Zigang Liu
    Ali Aslam
    JunMei Cui
    Hui Li
    Ying Wang
    Haiyan Tian
    Xiaodong Cao
    BMC Plant Biology, 22
  • [6] Integrated methylome and transcriptome analysis unravel the cold tolerance mechanism in winter rapeseed(Brassica napus L.)
    Zheng, Guoqiang
    Dong, Xiaoyun
    Wei, Jiaping
    Liu, Zigang
    Aslam, Ali
    Cui, JunMei
    Li, Hui
    Wang, Ying
    Tian, Haiyan
    Cao, Xiaodong
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [7] INVITRO FREEZING TOLERANCE IN RELATION TO WINTER SURVIVAL OF RAPESEED CULTIVARS
    TEUTONICO, RA
    PALTA, JP
    OSBORN, TC
    CROP SCIENCE, 1993, 33 (01) : 103 - 107
  • [8] Integration of the metabolome and transcriptome reveals the molecular mechanism of drought tolerance in Plumeria rubra
    Sun, Rong
    Liu, Shan
    Gao, Jinglei
    Zhao, Lihua
    FRONTIERS IN GENETICS, 2023, 14
  • [9] The relationship between vernalization saturation and the maintenance of freezing tolerance in winter rapeseed
    Waalen, Wendy M.
    Stavang, Jon Anders
    Olsen, Jorunn E.
    Rognli, Odd Arne
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2014, 106 : 164 - 173
  • [10] Integration of proteome and transcriptome data reveals the mechanism involved in controlling of Fusarium graminearum by Saccharomyces cerevisiae
    Zhao, Lina
    Cheng, Yangyang
    Li, Bo
    Gu, Xiangyu
    Zhang, Xiaoyun
    Boateng, Nana Adwoa Serwah
    Zhang, Hongyin
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2019, 99 (13) : 5760 - 5770