Mixture density network estimation of continuous variable maximum likelihood using discrete training samples

被引:1
作者
Burton, Charles [1 ]
Stubbs, Spencer [1 ,2 ]
Onyisi, Peter [1 ]
机构
[1] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[2] Rutgers State Univ, Phys Dept, New Brunswick, NJ USA
来源
EUROPEAN PHYSICAL JOURNAL C | 2021年 / 81卷 / 07期
关键词
INTERPOLATION;
D O I
10.1140/epjc/s10052-021-09469-y
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Mixture density networks (MDNs) can be used to generate posterior density functions of model parameters theta given a set of observables x. In some applications, training data are available only for discrete values of a continuous parameter theta. In such situations, a number of performance-limiting issues arise which can result in biased estimates. We demonstrate the usage of MDNs for parameter estimation, discuss the origins of the biases, and propose a corrective method for each issue.
引用
收藏
页数:9
相关论文
共 12 条
[1]   Parameter estimation using neural networks in the presence of detector effects [J].
Andreassen, Anders ;
Hsu, Shih-Chieh ;
Nachman, Benjamin ;
Suaysom, Natchanon ;
Suresh, Adi .
PHYSICAL REVIEW D, 2021, 103 (03)
[2]   Interpolation between multi-dimensional histograms using a new non-linear moment morphing method [J].
Baak, M. ;
Gadatsch, S. ;
Harrington, R. ;
Verkerke, W. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 771 :39-48
[3]  
Bishop C.M., 1994, tech. rep.
[4]   A guide to constraining effective field theories with machine learning [J].
Brehmer, Johann ;
Cranmer, Kyle ;
Louppe, Gilles ;
Pavez, Juan .
PHYSICAL REVIEW D, 2018, 98 (05)
[5]  
Burton C.D., **DATA OBJECT**, DOI 10.5281/zenodo.5061425
[6]  
Cranmer K., 2012, Report No. CERN-OPEN- 2012-016
[7]  
Flesher F., 2020, PARAMETER INFERENCE
[8]  
Kingma DP, 2014, Conference of Learning Representations
[9]   ESTIMATION OF A PROBABILITY DENSITY-FUNCTION AND MODE [J].
PARZEN, E .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :1065-&
[10]  
Paszke etal A., 2019, ADV NEURAL INFORM PR, V32, P8024