Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes

被引:152
|
作者
Sun, Yan-Bo [1 ,2 ]
Xiong, Zi-Jun [3 ,4 ,5 ]
Xiang, Xue-Yan [3 ,4 ,5 ,6 ]
Liu, Shi-Ping [3 ,4 ,5 ,7 ]
Zhou, Wei-Wei [1 ,2 ]
Tu, Xiao-Long [1 ,2 ,8 ]
Zhong, Li [9 ]
Wang, Lu [9 ]
Wu, Dong-Dong [1 ,2 ]
Zhang, Bao-Lin [1 ,2 ,9 ]
Zhu, Chun-Ling [1 ,2 ]
Yang, Min-Min [1 ,2 ]
Chen, Hong-Man [1 ,2 ]
Li, Fang [3 ,5 ]
Zhou, Long [3 ,5 ]
Feng, Shao-Hong [3 ,5 ]
Huang, Chao [3 ,5 ,7 ]
Zhang, Guo-Jie [3 ,5 ,10 ]
Irwin, David [1 ,2 ,11 ,12 ]
Hillis, David M. [13 ,14 ]
Murphy, Robert W. [1 ,2 ,15 ]
Yang, Huan-Ming [5 ,16 ,17 ]
Che, Jing [1 ,2 ]
Wang, Jun [5 ,16 ,18 ,19 ,20 ]
Zhang, Ya-Ping [1 ,2 ,9 ]
机构
[1] Chinese Acad Sci, Kunming Inst Zool, State Key Lab Genet Resources & Evolut, Kunming 650223, Peoples R China
[2] Chinese Acad Sci, Kunming Inst Zool, Yunnan Lab Mol Biol Domest Anim, Kunming 650223, Peoples R China
[3] China Natl Gene Bank, Shenzhen, Peoples R China
[4] Shenzhen Key Lab Trans Biotechnol, Shenzhen, Peoples R China
[5] BGI Shenzhen, Shenzhen 518083, Peoples R China
[6] Sichuan Univ, Coll Life Sci, Chengdu 610064, Peoples R China
[7] S China Univ Technol, Sch Biosci & Biotechnol, Guangzhou 510641, Guangdong, Peoples R China
[8] Chinese Acad Sci, Kunming Coll Life Sci, Kunming 650204, Peoples R China
[9] Yunnan Univ, Lab Conservat & Utilizat Bioresource, Kunming 650091, Peoples R China
[10] Univ Copenhagen, Dept Biol, Ctr Social Evolut, DK-2100 Copenhagen, Denmark
[11] Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON M55 1A8, Canada
[12] Univ Toronto, Banting & Best Diabet Ctr, Toronto, ON M55 1A8, Canada
[13] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA
[14] Univ Texas Austin, Ctr Computat Biol & Bioinformat, Austin, TX 78712 USA
[15] Royal Ontario Museum, Ctr Biodivers & Conservat Biol, Toronto, ON M55 2C6, Canada
[16] King Abdulaziz Univ, Princess Al Jawhara Albrahim Ctr Excellence Res H, Jeddah 21589, Saudi Arabia
[17] James D Watson Inst Genome Sci, Hangzhou 310008, Zhejiang, Peoples R China
[18] Univ Copenhagen, Dept Biol, DK-2200 Copenhagen, Denmark
[19] Macau Univ Sci & Technol, Taipa 999078, Macau, Peoples R China
[20] Univ Hong Kong, Dept Med, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
de novo genome; transposable elements; chromosome rearrangement; highly conserved element; HIGH-ALTITUDE; XENOPUS-TROPICALIS; ADAPTATION; DIVERGENCE; ALIGNMENT; DATABASE; HISTORY; RATES; TOOL;
D O I
10.1073/pnas.1501764112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies.
引用
收藏
页码:E1257 / E1262
页数:6
相关论文
共 50 条
  • [1] Reproductive ecology of a Tibetan frog Nanorana parkeri (Anura: Ranidae)
    Lu, Xin
    Ma, Xiaoyan
    Fan, Liqing
    Hu, Yigang
    Lang, Zedong
    Li, Zhibin
    Fang, Bohao
    Guo, Weibin
    JOURNAL OF NATURAL HISTORY, 2016, 50 (43-44) : 2769 - 2782
  • [2] Selection and environmental adaptation along a path to speciation in the Tibetan frog Nanorana parkeri
    Wang, Guo-Dong
    Zhang, Bao-Lin
    Zhou, Wei-Wei
    Li, Yong-Xin
    Jin, Jie-Qiong
    Shao, Yong
    Yang, He-chuan
    Liu, Yan-Hu
    Yan, Fang
    Chen, Hong-Man
    Jing, Li
    Gao, Feng
    Zhang, Yaoguang
    Li, Haipeng
    Mao, Bingyu
    Murphy, Robert W.
    Wake, David B.
    Zhang, Ya-Ping
    Che, Jing
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (22) : E5056 - E5065
  • [3] Analysis of the Selection Signal of the Tibetan Black Chicken Genome Based on Whole-Genome Sequencing
    Feng, Jing
    Zhu, Wei
    Shi, Hairen
    Peng, Da
    Zang, Lei
    Wang, Yan
    ZhaXi, Luobu
    BaiMa, Jiancai
    Amevor, Felix Kwame
    Wang, Xiaoqi
    Ma, Xueying
    Zhao, Xiaoling
    GENES, 2023, 14 (09)
  • [4] BacSeq: A User-Friendly Automated Pipeline for Whole-Genome Sequence Analysis of Bacterial Genomes
    Chukamnerd, Arnon
    Jeenkeawpiam, Kongpop
    Chusri, Sarunyou
    Pomwised, Rattanaruji
    Singkhamanan, Kamonnut
    Surachat, Komwit
    MICROORGANISMS, 2023, 11 (07)
  • [5] The Genome Sequence of AlpineMegacarpaea delavayiIdentifies Species-Specific Whole-Genome Duplication
    Yang, Qiao
    Bi, Hao
    Yang, Wenjie
    Li, Ting
    Jiang, Jiebei
    Zhang, Lei
    Liu, Jianquan
    Hu, Quanjun
    FRONTIERS IN GENETICS, 2020, 11
  • [6] Whole-genome sequence assembly of the water buffalo (Bubalus bubalis)
    Tantia, M. S.
    Vijh, R. K.
    Bhasin, V.
    Sikka, Poonam
    Vij, P. K.
    Kataria, R. S.
    Mishra, B. P.
    Yadav, S. P.
    Pandey, A. K.
    Sethi, R. K.
    Joshi, B. K.
    Gupta, S. C.
    Pathak, K. M. L.
    INDIAN JOURNAL OF ANIMAL SCIENCES, 2011, 81 (05) : 465 - 473
  • [7] Whole-genome sequence of the oriental lung fluke Paragonimus westermani
    Oey, Harald
    Zakrzewski, Martha
    Narain, Kanwar
    Devi, K. Rekha
    Agatsuma, Takeshi
    Nawaratna, Sujeevi
    Gobert, Geoffrey N.
    Jones, Malcolm K.
    Ragan, Mark A.
    McManus, Donald P.
    Krause, Lutz
    GIGASCIENCE, 2019, 8 (01):
  • [8] Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant
    Lee, Chien-Yueh
    Hsieh, Ping-Han
    Chiang, Li-Mei
    Chattopadhyay, Amrita
    Li, Kuan-Yi
    Lee, Yi-Fang
    Lu, Tzu-Pin
    Lai, Liang-Chuan
    Lin, En-Chung
    Lee, Hsinyu
    Ding, Shih-Torng
    Tsai, Mong-Hsun
    Chen, Chien-Yu
    Chuang, Eric Y.
    GIGASCIENCE, 2018, 7 (05):
  • [9] Impact of whole-genome duplications on structural variant evolution in Cochlearia
    Hamala, Tuomas
    Moore, Christopher
    Cowan, Laura
    Carlile, Matthew
    Gopaulchan, David
    Brandrud, Marie K.
    Birkeland, Siri
    Loose, Matthew
    Kolar, Filip
    Koch, Marcus A.
    Yant, Levi
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] Small Homologous Blocks in Phytophthora Genomes Do Not Point to an Ancient Whole-Genome Duplication
    van Hooff, Jolien J. E.
    Snel, Berend
    Seidl, Michael F.
    GENOME BIOLOGY AND EVOLUTION, 2014, 6 (05): : 1079 - 1085