Locally Perturbed Random Walks with Unbounded Jumps

被引:8
作者
Paulin, Daniel [1 ,2 ]
Szasz, Domokos [3 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117548, Singapore
[2] Budapest Univ Technol & Econ, Inst Phys, H-1117 Budapest, Hungary
[3] Budapest Univ Technol & Econ, Dept Stochast, H-1117 Budapest, Hungary
关键词
Random walk; Local impurities; Infinite horizon; Weak convergence; Brownian motion; Local limit theorem; LORENTZ PROCESS; RECURRENCE;
D O I
10.1007/s10955-010-0078-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Szasz and Telcs (J. Stat. Phys. 26(3), 1981) have shown that for the diffusively scaled, simple symmetric random walk, weak convergence to the Brownian motion holds even in the case of local impurities if d >= 2. The extension of their result to finite range random walks is straightforward. Here, however, we are interested in the situation when the random walk has unbounded range. Concretely we generalize the statement of Szasz and Telcs (J. Stat. Phys. 26(3), 1981) to unbounded random walks whose jump distribution belongs to the domain of attraction of the normal law. We do this first: for diffusively scaled random walks on Z(d) (d >= 2) having finite variance; and second: for random walks with distribution belonging to the non-normal domain of attraction of the normal law. This result can be applied to random walks with tail behavior analogous to that of the infinite horizon Lorentz-process; these, in particular, have infinite variance, and convergence to Brownian motion holds with the superdiffusive root n log n scaling.
引用
收藏
页码:1116 / 1130
页数:15
相关论文
共 18 条
  • [1] [Anonymous], 2010, Random Walk: A Modern Introduction
  • [2] [Anonymous], 1976, Principles of Random Walk
  • [3] STATISTICAL PROPERTIES OF 2-DIMENSIONAL PERIODIC LORENTZ GAS WITH INFINITE HORIZON
    BLEHER, PM
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) : 315 - 373
  • [4] CHERNOV N, 2006, P INT C MATH EUR MAT, V2, P1679
  • [5] Chernov N., 2009, USP MAT NAUK, V64, P73
  • [6] Lorentz Gas with Thermostatted Walls
    Chernov, Nikolai
    Dolgopyat, Dmitry
    [J]. ANNALES HENRI POINCARE, 2010, 11 (06): : 1117 - 1169
  • [7] Anomalous current in periodic Lorentz gases with infinite horizon
    Dolgopyat, D. I.
    Chernov, N. I.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (04) : 651 - 699
  • [8] LIMIT THEOREMS FOR LOCALLY PERTURBED PLANAR LORENTZ PROCESSES
    Dolgopyat, Dmitry
    Szasz, Domokos
    Varju, Tamas
    [J]. DUKE MATHEMATICAL JOURNAL, 2009, 148 (03) : 459 - 499
  • [9] DVORETZKY A., 1951, P 2 BERKELEY S MATH, P353
  • [10] ON SKEW BROWNIAN-MOTION
    HARRISON, JM
    SHEPP, LA
    [J]. ANNALS OF PROBABILITY, 1981, 9 (02) : 309 - 313