INFORMATION SET DECODING IN THE LEE METRIC WITH APPLICATIONS TO CRYPTOGRAPHY

被引:13
作者
Horlemann-Trautmann, Anna-Lena [1 ]
Weger, Violetta [2 ]
机构
[1] Univ St Gallen, Fac Math & Stat, Bodanstr 6, St Gallen, Switzerland
[2] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
关键词
Coding theory; Cryptography; McEliece system; Ring-linear codes; Lee metric; BCH CODES; CYCLIC CODES; ALGORITHM; GOETHALS;
D O I
10.3934/amc.2020089
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We convert Stern's information set decoding (ISD) algorithm to the ring Z/4Z equipped with the Lee metric. Moreover, we set up the general framework for a McEliece and a Niederreiter cryptosystem over this ring. The complexity of the ISD algorithm determines the minimum key size in these cryptosystems for a given security level. We show that using Lee metric codes can substantially decrease the key size, compared to Hamming metric codes. In the end we explain how our results can be generalized to other Galois rings Z/p(s)Z.
引用
收藏
页码:677 / 699
页数:23
相关论文
共 47 条
  • [1] [Anonymous], 2018, ARXIV181210955
  • [2] ASSMUS EF, 1963, INFORM CONTROL, V6, P315
  • [3] Becker A, 2012, LECT NOTES COMPUT SC, V7237, P520, DOI 10.1007/978-3-642-29011-4_31
  • [4] Berlekamp E. R., 2015, ALGEBRAIC CODING THE, Vrevised
  • [5] Bernstein DJ, 2011, LECT NOTES COMPUT SC, V6841, P743, DOI 10.1007/978-3-642-22792-9_42
  • [6] Bernstein DJ, 2010, LECT NOTES COMPUT SC, V6061, P73, DOI 10.1007/978-3-642-12929-2_6
  • [7] Bernstein DJ, 2008, LECT NOTES COMPUT SC, V5299, P31, DOI 10.1007/978-3-540-88403-3_3
  • [8] Cyclic codes over Z4 of oddly even length
    Blackford, T
    [J]. DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) : 27 - 46
  • [9] CODES OVER INTEGER RESIDUE RINGS
    BLAKE, IF
    [J]. INFORMATION AND CONTROL, 1975, 29 (04): : 295 - 300
  • [10] CODES OVER CERTAIN RINGS
    BLAKE, IF
    [J]. INFORMATION AND CONTROL, 1972, 20 (04): : 396 - &