A GODUNOV TYPE SCHEME FOR A CLASS OF LWR TRAFFIC FLOW MODELS WITH NON-LOCAL FLUX

被引:42
作者
Friedrich, Jan [1 ]
Kolb, Oliver [1 ]
Goettlich, Simone [1 ]
机构
[1] Univ Mannheim, Dept Math, D-68131 Mannheim, Germany
关键词
Scalar conservation laws; non-local flux; Godunov scheme; traffic flow models; numerical simulations; CONSERVATION-LAWS; WELL-POSEDNESS; WAVES;
D O I
10.3934/nhm.2018024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a Godunov type numerical scheme for a class of scalar conservation laws with non-local flux arising for example in traffic flow models. The proposed scheme delivers more accurate solutions than the widely used Lax-Friedrichs type scheme. In contrast to other approaches, we consider a non-local mean velocity instead of a mean density and provide L-infinity and bounded variation estimates for the sequence of approximate solutions. Together with a discrete entropy inequality, we also show the well-posedness of the considered class of scalar conservation laws. The better accuracy of the Godunov type scheme in comparison to Lax-Friedrichs is proved by a variety of numerical examples.
引用
收藏
页码:531 / 547
页数:17
相关论文
共 16 条
[1]   NONLOCAL SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS [J].
Aggarwal, Aekta ;
Colombo, Rinaldo M. ;
Goatin, Paola .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :963-983
[2]   ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS [J].
Amorim, Paulo ;
Colombo, Rinaldo M. ;
Teixeira, Andreia .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01) :19-37
[3]   A continuum model for a re-entrant factory [J].
Armbruster, Dieter ;
Marthaler, Daniel E. ;
Ringhofer, Christian ;
Kempf, Karl ;
Jo, Tae-Chang .
OPERATIONS RESEARCH, 2006, 54 (05) :933-950
[4]   On nonlocal conservation laws modelling sedimentation [J].
Betancourt, F. ;
Buerger, R. ;
Karlsen, K. H. ;
Tory, E. M. .
NONLINEARITY, 2011, 24 (03) :855-885
[5]   Well-posedness of a conservation law with non-local flux arising in traffic flow modeling [J].
Blandin, Sebastien ;
Goatin, Paola .
NUMERISCHE MATHEMATIK, 2016, 132 (02) :217-241
[6]   HIGH-ORDER NUMERICAL SCHEMES FOR ONE-DIMENSIONAL NONLOCAL CONSERVATION LAWS [J].
Chalons, Christophe ;
Goatin, Paola ;
Villada, Luis M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01) :A288-A305
[7]   GLOBAL ENTROPY WEAK SOLUTIONS FOR GENERAL NON-LOCAL TRAFFIC FLOW MODELS WITH ANISOTROPIC KERNEL [J].
Chiarello, Felisia Angela ;
Goatin, Paola .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (01) :163-180
[8]   A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC [J].
Colombo, Rinaldo M. ;
Garavello, Mauro ;
Lecureux-Mercier, Magali .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (04)
[9]   CONTROL OF THE CONTINUITY EQUATION WITH A NON LOCAL FLOW [J].
Colombo, Rinaldo M. ;
Herty, Michael ;
Mercier, Magali .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (02) :353-379
[10]  
Goatin P., 2015, LIGHTHILL WHITHAM RI