Deep Learning for Additive Screening in Perovskite Light-Emitting Diodes

被引:29
作者
Zhang, Liang [1 ,2 ]
Li, Na [1 ,2 ]
Liu, Dawei [1 ,2 ]
Tao, Guanhong [3 ]
Xu, Weidong [4 ,5 ]
Li, Mengmeng [1 ,2 ]
Chu, Ying [1 ,2 ]
Cao, Chensi [1 ,2 ]
Lu, Feiyue [1 ,2 ]
Hao, Chenjie [1 ,2 ]
Zhang, Ju [1 ,2 ]
Cao, Yu [4 ,6 ]
Gao, Feng [5 ]
Wang, Nana [1 ,2 ]
Zhu, Lin [1 ,2 ]
Huang, Wei [1 ,2 ,4 ,6 ]
Wang, Jianpu [1 ,2 ,6 ]
机构
[1] Nanjing Tech Univ NanjingTech, Key Lab Flexible Elect KLOFE, 30 South Puzhu Rd, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ NanjingTech, Inst Adv Mat IAM, 30 South Puzhu Rd, Nanjing 211816, Peoples R China
[3] Chengdu Spaceon Grp Co Ltd, Chengdu 610036, Peoples R China
[4] Northwestern Polytech Univ, Shaanxi Inst Flexible Elect SIFE, Xian, Peoples R China
[5] Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden
[6] Strait Lab Flexible Elect SLoFE, Fuzhou 350117, Fujian, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Additive Engineering; Light-Emitting Diode; Machine Learning; Molecule Screening; Perovskite; DESIGN;
D O I
10.1002/anie.202209337
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Additive engineering with organic molecules is of critical importance for achieving high-performance perovskite optoelectronic devices. However, experimentally finding suitable additives is costly and time consuming, while conventional machine learning (ML) is difficult to predict accurately due to the limited experimental data available in this relatively new field. Here, we demonstrate a deep learning method that can predict the effectiveness of additives in perovskite light-emitting diodes (PeLEDs) with a high accuracy up to 96 % by using a small dataset of 132 molecules. This model can maximize the information of the molecules and significantly mitigate the duplicated problem that usually happened with previous models in ML for molecular screening. Very high efficiency PeLEDs with a peak external quantum efficiency up to 22.7 % can be achieved by using the predicated additive. Our work opens a new avenue for further boosting the performance of perovskite optoelectronic devices.
引用
收藏
页数:6
相关论文
共 38 条
  • [1] [Anonymous], 2000, Handbookof Molecular Descriptors
  • [2] Machine learning for molecular and materials science
    Butler, Keith T.
    Davies, Daniel W.
    Cartwright, Hugh
    Isayev, Olexandr
    Walsh, Aron
    [J]. NATURE, 2018, 559 (7715) : 547 - 555
  • [3] Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures
    Cao, Yu
    Wang, Nana
    Tian, He
    Guo, Jingshu
    Wei, Yingqiang
    Chen, Hong
    Miao, Yanfeng
    Zou, Wei
    Pan, Kang
    He, Yarong
    Cao, Hui
    Ke, You
    Xu, Mengmeng
    Wang, Ying
    Yang, Ming
    Du, Kai
    Fu, Zewu
    Kong, Decheng
    Dai, Daoxin
    Jin, Yizheng
    Li, Gongqiang
    Li, Hai
    Peng, Qiming
    Wang, Jianpu
    Huang, Wei
    [J]. NATURE, 2018, 562 (7726) : 249 - +
  • [4] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [5] Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices
    Chiba, Takayuki
    Hayashi, Yukihiro
    Ebe, Hinako
    Hoshi, Keigo
    Sato, Jun
    Sato, Shugo
    Pu, Yong-Jin
    Ohisa, Satoru
    Kido, Junji
    [J]. NATURE PHOTONICS, 2018, 12 (11) : 681 - +
  • [6] SUPPORT-VECTOR NETWORKS
    CORTES, C
    VAPNIK, V
    [J]. MACHINE LEARNING, 1995, 20 (03) : 273 - 297
  • [7] Solution-processed semiconductors for next-generation photodetectors (vol 2, 16100, 2017)
    de Arquer, F. Pelayo Garcia
    Armin, Ardalan
    Meredith, Paul
    Sargent, Edward H.
    [J]. NATURE REVIEWS MATERIALS, 2017, 2 (03):
  • [8] Reoptimization of MDL keys for use in drug discovery
    Durant, JL
    Leland, BA
    Henry, DR
    Nourse, JG
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (06): : 1273 - 1280
  • [9] Bayesian network classifiers
    Friedman, N
    Geiger, D
    Goldszmidt, M
    [J]. MACHINE LEARNING, 1997, 29 (2-3) : 131 - 163
  • [10] Gómez-Bombarelli R, 2016, NAT MATER, V15, P1120, DOI [10.1038/NMAT4717, 10.1038/nmat4717]