On the condition of the zeros of characteristic polynomials

被引:4
作者
Buergisser, Peter [1 ]
Cucker, Felipe [2 ]
Cardozo, Elisa Rocha [3 ]
机构
[1] Tech Univ Berlin, Inst Math, Berlin, Germany
[2] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Univ Republica, Ctr Matemat, Montevideo, Uruguay
关键词
Eigenvalues; Characteristic polynomial; Condition; Random matrices; MATRICES;
D O I
10.1016/j.jco.2017.03.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that the expectation of the logarithm of the condition number of each of the zeros of the characteristic polynomial of a complex standard Gaussian matrix is Omega (n) (the real and imaginary parts of the entries of a Gaussian matrix are independent standard Gaussian random variables). This may provide a theoretical explanation for the common practice in numerical linear algebra that advises against computing eigenvalues via root-finding for characteristic polynomials. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:72 / 84
页数:13
相关论文
共 22 条
[1]  
[Anonymous], 1997, NUMERICAL LINEAR ALG
[2]  
[Anonymous], 1997, Applied numerical linear algebra
[3]  
Armentano D., J EUR MATH IN PRESS
[4]  
Borgwardt K.H., 1987, SIMPLEX METHOD PROBA
[5]  
Burgisser P, 2013, GRUNDLEHREN MATH WIS, V349
[6]  
Datta B.N., 1995, Numerical Linear Algebra and Applications
[7]  
Demmel J. W., 1987, Journal of Complexity, V3, P201, DOI 10.1016/0885-064X(87)90027-6
[8]   ON CONDITION NUMBERS AND THE DISTANCE TO THE NEAREST ILL-POSED PROBLEM [J].
DEMMEL, JW .
NUMERISCHE MATHEMATIK, 1987, 51 (03) :251-289
[9]  
DEMMEL JW, 1988, MATH COMPUT, V50, P449, DOI 10.1090/S0025-5718-1988-0929546-7
[10]   STATISTICAL ENSEMBLES OF COMPLEX QUATERNION AND REAL MATRICES [J].
GINIBRE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (03) :440-&