Effects of organic composition on mesophilic anaerobic digestion of food waste

被引:90
作者
Li, Yangyang [1 ,2 ]
Jin, Yiying [1 ,2 ]
Borrion, Aiduan [3 ]
Li, Hailong [4 ]
Li, Jinhui [1 ,2 ]
机构
[1] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Minist Educ China, Key Lab Solid Waste Management & Environm Safety, Beijing 100084, Peoples R China
[3] UCL, Dept Civil Environm & Geomat Engn, London WC1E 6BT, England
[4] Malardalen Univ, Sch Business Soc & Engn, SE-72123 Vasteras, Sweden
关键词
Food waste; Anaerobic digestion; Organic composition; Methane; VOLATILE FATTY-ACIDS; CO-DIGESTION; BIOGAS PRODUCTION; ACIDOGENIC FERMENTATION; THERMAL PRETREATMENT; HYDROGEN-PRODUCTION; METHANE PRODUCTION; DEGRADATION; HYDROLYSIS; PROTEIN;
D O I
10.1016/j.biortech.2017.07.006
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Anaerobic digestion of food waste (FW) has been widely investigated, however, little is known about the influence of organic composition on the FW digestion process. This study aims to identify the optimum composition ratios of carbohydrate (CA), protein (CP) and lipid (EE) for maintaining high methane yield and process stability. The results show that the CA-CP-EE ratio was significantly correlated with performance and degradability parameters. Controlling the CA-CP-EE ratio higher than 1.89 (CA higher than 8.3%, CP lower than 5.0%, and EE lower than 5.6%) could be an effective way to maintain stable digestion and achieve higher methane production (385-627 mL/g VS) and shorter digestion retention (196-409 h). The CA-CP-EE ratio could be used as an important indicator for digestion performance. To effectively evaluate organic reduction, the concentration and removal efficiency of organic compositions in both solid phases and total FW should be considered. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 49 条
[1]   Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products [J].
Alibardi, Luca ;
Cossu, Raffaello .
WASTE MANAGEMENT, 2016, 47 :69-77
[2]   Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA) [J].
Alves, M. Madalena ;
Pereira, M. Alcina ;
Sousa, Diana Z. ;
Cavaleiro, Ana J. ;
Picavet, Merijn ;
Smidt, Hauke ;
Stams, Alfons J. M. .
MICROBIAL BIOTECHNOLOGY, 2009, 2 (05) :538-550
[3]  
American P. H. A., 1915, STANDARD METHODS EXA
[4]   Assessment of the anaerobic biodegradability of macropollutants [J].
Angelidaki I. ;
Sanders W. .
Re/Views in Environmental Science & Bio/Technology, 2004, 3 (2) :117-129
[5]  
[Anonymous], 1988, BIOL ANAEROBIC ORGAN
[6]   Identification of synergistic impacts during anaerobic co-digestion of organic wastes [J].
Astals, S. ;
Batstone, D. J. ;
Mata-Alvarez, J. ;
Jensen, P. D. .
BIORESOURCE TECHNOLOGY, 2014, 169 :421-427
[7]   PROTEIN-DEGRADATION IN ANAEROBIC-DIGESTION - INFLUENCE OF VOLATILE FATTY-ACIDS AND CARBOHYDRATES ON HYDROLYSIS AND ACIDOGENIC FERMENTATION OF GELATIN [J].
BREURE, AM ;
MOOIJMAN, KA ;
VANANDEL, JG .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1986, 24 (05) :426-431
[8]   Solid state anaerobic co-digestion of yard waste and food waste for biogas production [J].
Brown, Dan ;
Li, Yebo .
BIORESOURCE TECHNOLOGY, 2013, 127 :275-280
[9]   BIOCHEMICAL METHANE POTENTIAL AND SOLID-STATE ANAEROBIC-DIGESTION OF KOREAN FOOD WASTES [J].
CHO, JK ;
PARK, SC ;
CHANG, HN .
BIORESOURCE TECHNOLOGY, 1995, 52 (03) :245-253
[10]   Anaerobic digestion of lipid-rich waste -: Effects of lipid concentration [J].
Cirne, D. G. ;
Paloumet, X. ;
Bjornsson, L. ;
Alves, M. M. ;
Mattiasson, B. .
RENEWABLE ENERGY, 2007, 32 (06) :965-975