Cellular automaton model for the simulation of laser dynamics -: art. no. 066708

被引:27
作者
Guisado, JL
Jiménez-Morales, F
Guerra, JM
机构
[1] Univ Seville, Dept Fis Mat Condensada, E-41080 Seville, Spain
[2] Univ Complutense Madrid, Fac CC Fis, Dept Opt, E-28040 Madrid, Spain
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 06期
关键词
D O I
10.1103/PhysRevE.67.066708
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The classical modeling approach for laser study relies on the differential equations. In this paper, a cellular automaton model is proposed as an alternative for the simulation of population dynamics. Even though the model is simplified it captures the essence of laser phenomenology: (i) there is a threshold pumping rate that depends inversely on the decaying lifetime of the atoms and the photons; and (ii) depending on these lifetimes and on the pumping rate, a constant or an oscillatory behavior can be observed. More complex behaviors such as spiking and pattern formation can also be studied with the cellular automaton model.
引用
收藏
页数:8
相关论文
共 17 条
[1]   REACTION-DIFFUSION CELLULAR-AUTOMATA MODEL FOR THE FORMATION OF LIESEGANG PATTERNS [J].
CHOPARD, B ;
LUTHI, P ;
DROZ, M .
PHYSICAL REVIEW LETTERS, 1994, 72 (09) :1384-1387
[2]  
Chopard B., 1998, Cellular Automata Modeling of Physical Systems
[3]   Time resolved pattern evolution in a large aperture laser [J].
Encinas-Sanz, F ;
Leyva, I ;
Guerra, JM .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :883-886
[4]   Time-resolved spatiotemporal dynamics in a broad-area CO2 laser -: art. no. 043821 [J].
Encinas-Sanz, F ;
Leyva, I ;
Guerra, JM .
PHYSICAL REVIEW A, 2000, 62 (04) :11
[5]   Cellular automaton growth on Z2: Theorems, examples, and problems [J].
Gravner, J ;
Griffeath, D .
ADVANCES IN APPLIED MATHEMATICS, 1998, 21 (02) :241-304
[6]   LATTICE BOLTZMANN MODEL OF IMMISCIBLE FLUIDS [J].
GUNSTENSEN, AK ;
ROTHMAN, DH ;
ZALESKI, S ;
ZANETTI, G .
PHYSICAL REVIEW A, 1991, 43 (08) :4320-4327
[7]  
Haken H., 1983, Synergetics, an Introduction: Non-Equilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology
[8]   Spatio-temporal chaos in the transverse section of lasers [J].
Huyet, G ;
Tredicce, JR .
PHYSICA D, 1996, 96 (1-4) :209-214
[9]   Polarization instabilities in a two-photon laser [J].
Pfister, O ;
Brown, WJ ;
Stenner, MD ;
Gauthier, DJ .
PHYSICAL REVIEW LETTERS, 2001, 86 (20) :4512-4515
[10]  
Seybold PG, 1999, INT J QUANTUM CHEM, V75, P751, DOI 10.1002/(SICI)1097-461X(1999)75:4/5<751::AID-QUA41>3.0.CO