Deep feature normalization using rest state EEG signals for Brain-Computer Interface

被引:3
作者
Kwak, Youngchul [1 ]
Song, Woo-Jin [1 ]
Kim, Song-Eun [2 ]
机构
[1] POSTECH, Dept Elect Engn, Pohang, South Korea
[2] Hanbat Natl Univ, Dept Elect & Control Sci, Daejeon, South Korea
来源
2021 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC) | 2021年
关键词
Brain-computer interface (BCI); deep learning; electroencephalogram (EEG); motor imagery;
D O I
10.1109/ICEIC51217.2021.9369712
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The brain-computer interface (BCI) system provides information exchanges between neural signals containing the user's intention and device control signals. Electroencephalogram (EEG) is a widely used signal for obtaining neural signals. In EEG decoding, EEG variability across different subjects critically degrades deep learning performance. In this paper, we propose a feature normalization method for reducing EEG variability with rest state EEG signals. The decoding structure is trained with a normalized feature which is normalized by subtracting the normalization feature extracted from the normalization structure. Experimental results show that the deep feature normalization algorithm dramatically enhances the performance of conventional deep learning algorithms.
引用
收藏
页数:3
相关论文
共 11 条
  • [1] Filter bank common spatial pattern algorithm on BCI competition IV Datasets 2a and 2b
    Ang, Kai Keng
    Chin, Zheng Yang
    Wang, Chuanchu
    Guan, Cuntai
    Zhang, Haihong
    [J]. FRONTIERS IN NEUROSCIENCE, 2012, 6
  • [2] Bashivan P, 2015, ARXIV151106448
  • [3] Fazli S., 2009, Advances in Neural Information Processing Systems, V22, P513
  • [4] Real-Time EEG-Based Happiness Detection System
    Jatupaiboon, Noppadon
    Pan-ngum, Setha
    Israsena, Pasin
    [J]. SCIENTIFIC WORLD JOURNAL, 2013,
  • [5] LAWHERN VJ, 2018, J NEURAL ENG, V15, DOI DOI 10.1088/1741-2552/AACE8C
  • [6] Oikonomou Vangelis P., 2017, 2017 IEEE 30 INT S C
  • [7] BCI2000: A general-purpose, brain-computer interface (BCI) system
    Schalk, G
    McFarland, DJ
    Hinterberger, T
    Birbaumer, N
    Wolpaw, JR
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) : 1034 - 1043
  • [8] Deep Learning With Convolutional Neural Networks for EEG Decoding and Visualization
    Schirrmeister, Robin Tibor
    Springenberg, Jost Tobias
    Fiederer, Lukas Dominique Josef
    Glasstetter, Martin
    Eggensperger, Katharina
    Tangermann, Michael
    Hutter, Frank
    Burgard, Wolfram
    Ball, Tonio
    [J]. HUMAN BRAIN MAPPING, 2017, 38 (11) : 5391 - 5420
  • [9] Brain-computer interfaces for communication and control
    Wolpaw, JR
    Birbaumer, N
    McFarland, DJ
    Pfurtscheller, G
    Vaughan, TM
    [J]. CLINICAL NEUROPHYSIOLOGY, 2002, 113 (06) : 767 - 791
  • [10] Motor Imagery Classification via Temporal Attention Cues of Graph Embedded EEG Signals
    Zhang, Dalin
    Chen, Kaixuan
    Jian, Debao
    Yao, Lina
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (09) : 2570 - 2579