Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes

被引:116
作者
Liew, Chiam-Wen [1 ]
Ramesh, S. [1 ]
机构
[1] Univ Malaya, Fac Sci, Ctr Ion, Dept Phys, Kuala Lumpur 50603, Malaysia
关键词
Corn starch; Ionic liquid; EDLC; Capacitance; SOLID POLYMER ELECTROLYTES; DOUBLE-LAYER CAPACITOR; IONIC-LIQUID; SUPERCAPACITORS; HEXAFLUOROPHOSPHATE; CONDUCTIVITY; PERFORMANCE; ELECTRODES; TRANSPORT; GLYCEROL;
D O I
10.1016/j.carbpol.2015.02.024
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF(6)) are prepared by solution casting technique. Temperature dependence-ionic conductivity studies reveal Vogel-Tamman-Fulcher (VTF) relationship which is associated with free volume theory. Ionic liquid-based biopolymer electrolytes show lower glass transition temperature (T-g) than ionic liquid-free biopolymer electrolyte. X-ray diffraction (XRD) studies demonstrate higher amorphous region of ionic liquid-added biopolymer electrolytes. In addition, the potential stability window of the biopolymer electrolyte becomes wider and stable up to 2.9 V. Conclusively, the fabricated electric double layer capacitor (EDLC) shows improved electrochemical performance upon addition of ionic liquid into the biopolymer electrolyte. The specific capacitance of EDLC based anionic liquid-added polymer electrolyte is relatively higher than that of ionic liquid-free polymer electrolyte as depicted in cyclic voltammogram. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:222 / 228
页数:7
相关论文
共 27 条
[1]   A non-aqueous electrolyte-based asymmetric supercapacitor with polymer and metal oxide/multiwalled carbon nanotube electrodes [J].
Amitha, F. Estaline ;
Reddy, A. Leela Mohana ;
Ramaprabhu, S. .
JOURNAL OF NANOPARTICLE RESEARCH, 2009, 11 (03) :725-729
[2]   Electrical double layer capacitor using poly(methyl methacrylate)-C4BO8Li gel polymer electrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit [J].
Arof, A. K. ;
Kufian, M. Z. ;
Syukur, M. F. ;
Aziz, M. F. ;
Abdelrahman, A. E. ;
Majid, S. R. .
ELECTROCHIMICA ACTA, 2012, 74 :39-45
[3]   Structure, thermal and transport properties of PVAc-LiClO4 solid polymer electrolytes [J].
Baskaran, R. ;
Selvasekarapandian, S. ;
Kuwata, N. ;
Kawamura, J. ;
Hattori, T. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2007, 68 (03) :407-412
[4]   Characterization of chitosan/PVA blended electrolyte doped with NH4I [J].
Buraidah, M. H. ;
Arof, A. K. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (16-17) :3261-3266
[5]   Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids [J].
Cheng, Hu ;
Zhu, Changbao ;
Huang, Bin ;
Lu, Mi ;
Yang, Yong .
ELECTROCHIMICA ACTA, 2007, 52 (19) :5789-5794
[6]   Polymer Electrolyte Based Solid State Redox Supercapacitors with Poly (3-Methyl Thiophene) and Polypyrrole Conducting Polymer Electrodes [J].
Hashmi, S. A. ;
Latham, R. J. ;
Linford, R. G. ;
Schlindwein, W. S. .
IONICS, 1997, 3 (3-4) :177-183
[7]   Lithium ion transport and ion-polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid [J].
Kumar, Yogesh ;
Hashmi, S. A. ;
Pandey, G. P. .
SOLID STATE IONICS, 2011, 201 (01) :73-80
[8]   Supercapacitors using polymer electrolytes based on poly(urethane) [J].
Latham, RJ ;
Rowlands, SE ;
Schlindwein, WS .
SOLID STATE IONICS, 2002, 147 (3-4) :243-248
[9]   Crosslinkable fumed silica-based nanocomposite electrolytes for rechargeable lithium batteries [J].
Li, Yangxing ;
Yerian, Jeffrey A. ;
Khan, Saad A. ;
Fedkiw, Peter S. .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :1288-1296
[10]   Comparing Triflate and Hexafluorophosphate Anions of Ionic Liquids in Polymer Electrolytes for Supercapacitor Applications [J].
Liew, Chiam-Wen ;
Ramesh, S. .
MATERIALS, 2014, 7 (05) :4019-4033