Monte Carlo simulation of diffusion with uniform sinks and sources for vacancies

被引:0
|
作者
Zenísek, J
Svoboda, J
Fischer, FD
机构
[1] Austrian Acad Sci, Erich Schmid Inst Mat Sci, A-8700 Leoben, Austria
[2] Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic
[3] Univ Leoben, Inst Mech, A-8700 Leoben, Austria
来源
DIFFUSION IN MATERIALS: DIMAT 2004, PTS 1 AND 2 | 2005年 / 237-240卷
关键词
diffusion; Onsager's relations; Monte Carlo simulations; vacancies;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new concept of generation and annihilation of vacancies at uniform sinks and sources for vacancies is incorporated into the standard Monte Carlo model for vacancy mediated diffusion. This model enables to treat the vacancy wind as well as the deformation of the specimen and the shift of the Kirkendall plane. The Monte Carlo model is used for the testing of the recent phenomenological theories of diffusion by Darken, Manning and Moleko. The agreement with the self-consistent Moleko theory is excellent. On the other hand the agreement with the classical Darken theory used very often for the explanation of the Kirkendall effect is rather poor.
引用
收藏
页码:1168 / 1173
页数:6
相关论文
共 50 条
  • [21] Molecular dynamics based kinetic Monte Carlo simulation for accelerated diffusion
    Tavenner, Jacob P.
    Mendelev, Mikhail I.
    Lawson, John W.
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 218
  • [22] Neighboring interaction effect on surface diffusion using Monte Carlo simulation
    Snina, Mohamed
    Bennai, Mohamed
    Boughaleb, Yahia
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2013, 15 (5-6): : 505 - 508
  • [23] Monte Carlo simulation of diffusion in B2 ordered phase
    Athenes, M
    Bellon, P
    Martin, G
    DEFECT AND DIFFUSION FORUM, 1997, 143 : 297 - 302
  • [24] Monte Carlo simulation of oxygen tracer diffusion in a growing oxide film
    Mishin, Y
    Schimmelpfennig, J
    Gobel, M
    Borchardt, G
    DEFECT AND DIFFUSION FORUM, 1997, 143 : 1225 - 1230
  • [25] Self-diffusion in a triple-defect A-B binary system: Monte Carlo simulation
    Betlej, J.
    Sowa, P.
    Kozubski, R.
    Murch, G. E.
    Belova, I., V
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 172
  • [26] Monte Carlo simulation of diffusion in a spatially nonhomogeneous medium: correction to the Gaussian steplength
    Farnell, L
    Gibson, WG
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 198 (01) : 65 - 79
  • [27] Simulation of Atomic Diffusion in the Fcc NiAl System: A Kinetic Monte Carlo Study
    Alfonso, Dominic R.
    Tafen, De Nyago
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (21): : 11809 - 11817
  • [28] DEVELOPMENT OF MONTE CARLO SIMULATION CODE TO MODEL BEHAVIOR OF HYDROGEN ISOTOPES LOADED INTO TUNGSTEN CONTAINING VACANCIES
    Oda, T.
    Shimada, M.
    Zhang, K.
    Calderoni, P.
    Oya, Y.
    Sokolov, M.
    Kolasinski, R.
    Sharpe, J. P.
    Hatano, Y.
    FUSION SCIENCE AND TECHNOLOGY, 2011, 60 (04) : 1455 - 1458
  • [29] Simulation of chemically driven inelastic strain in multi-component systems with non-ideal sources and sinks for vacancies
    Svoboda, J.
    Fischer, F. D.
    Gamsjaeger, E.
    ACTA MATERIALIA, 2008, 56 (03) : 351 - 357
  • [30] The Monte Carlo simulation of the Borexino detector
    Agostini, M.
    Altenmueller, K.
    Appel, S.
    Atroshchenko, V.
    Bagdasarian, Z.
    Basilico, D.
    Bellini, G.
    Benziger, J.
    Bick, D.
    Bonfini, G.
    Borodikhina, L.
    Bravo, D.
    Caccianiga, B.
    Calaprice, F.
    Caminata, A.
    Canepa, M.
    Caprioli, S.
    Carlini, M.
    Cavalcante, P.
    Chepurnov, A.
    Choi, K.
    D'Angelo, D.
    Davini, S.
    Derbin, A.
    Ding, X. F.
    Di Noto, L.
    Drachnev, I.
    Fomenko, K.
    Formozov, A.
    Franco, D.
    Froborg, F.
    Gabriele, F.
    Galbiati, C.
    Ghiano, C.
    Giammarchi, M.
    Goeger-Neff, M.
    Goretti, A.
    Gromov, M.
    Hagner, C.
    Houdy, T.
    Hungerford, E.
    Ianni, Aldo
    Ianni, Andrea
    Jany, A.
    Jeschke, D.
    Kobychev, V.
    Korablev, D.
    Korga, G.
    Kryn, D.
    Laubenstein, M.
    ASTROPARTICLE PHYSICS, 2018, 97 : 136 - 159