Symmetric Triangle Network for Object Detection Within X-ray Baggage Security Imagery

被引:0
作者
Zhang, Weifeng [1 ,2 ]
Ni, Jiajia [1 ]
Liu, Libo [1 ]
Hu, Qingmao [1 ,3 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
来源
2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2021年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
X-ray baggage security image; object detection; multi-scale feature fusion; deep learning;
D O I
10.1109/IJCNN52387.2021.9533991
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
X-ray baggage security image inspection is crucial for maintaining safety and is difficult due to the 2D projection nature of the images and variable sizes of objects. We proposed an anchor-free symmetric triangle network (ST-Net) for object detection within X-ray baggage security imagery. The ST-Net has three main components: bottom-up structure, Symmetric triangle feature pyramid module (STFPM) and detector head. Specifically, the STFPM module has multiple paths with different directions and lengths, which can fuse the rich multi-scale feature representation. Symmetry structure can effectively supplement the global feature information. In addition, we built a new dualenergy (DE) dataset generated from the real dual-energy images to preserve the original information. Experiments on DE dataset and public SIXray dataset demonstrate the proposed ST-Net could surpass most existing methods.
引用
收藏
页数:7
相关论文
共 30 条
[1]  
Akcay S, 2017, IEEE IMAGE PROC, P1337, DOI 10.1109/ICIP.2017.8296499
[2]  
Akçay S, 2016, IEEE IMAGE PROC, P1057, DOI 10.1109/ICIP.2016.7532519
[3]  
[Anonymous], 2018, IEEE T INF FOREN SEC, DOI DOI 10.1109/TIFS.2018.2812196
[4]  
[Anonymous], 2015, Image and video technology
[5]  
[Anonymous], 2019, 2019 18TH IEEE INTER
[6]  
[Anonymous], 2016, ON USING FEATURE DES
[7]  
Dai JF, 2016, ADV NEUR IN, V29
[8]   CenterNet: Keypoint Triplets for Object Detection [J].
Duan, Kaiwen ;
Bai, Song ;
Xie, Lingxi ;
Qi, Honggang ;
Huang, Qingming ;
Tian, Qi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6568-6577
[9]  
Gaus Y. F. A., 2019, 2019 International Joint Conference on Neural Networks (IJCNN), P1, DOI [10.1109/IJCNN.2019.8851829, DOI 10.1109/IJCNN.2019.8851829]
[10]   Advanced Deep-Learning Techniques for Salient and Category-Specific Object Detection A survey [J].
Han, Junwei ;
Zhang, Dingwen ;
Cheng, Gong ;
Liu, Nian ;
Xu, Dong .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) :84-100