Bioethanol production from dedicated energy crops and residues in Arkansas, USA

被引:39
作者
Ge, Xumeng [1 ,2 ]
Burner, David M. [3 ]
Xu, Jianfeng [1 ,4 ]
Phillips, Gregory C. [1 ,4 ]
Sivakumar, Ganapathy [1 ]
机构
[1] Arkansas State Univ, Arkansas Biosci Inst, Jonesboro, AR USA
[2] Dalian Univ Technol, Sch Biosci & Biotechnol, Dalian, Peoples R China
[3] USDA ARS, Dale Bumpers Small Farms Res Ctr, Booneville, AR USA
[4] Arkansas State Univ, Coll Agr & Technol, Jonesboro, AR USA
基金
美国国家科学基金会;
关键词
Biofuels; Glucose; Lignocellulose; Miscanthus; Self-flocculating yeast; ETHANOL FERMENTATION; LIGNOCELLULOSE; HYDROLYSIS; SACCHARIFICATION; PRETREATMENT; MISCANTHUS; IMPACTS; SPSC01; SUGAR;
D O I
10.1002/biot.201000240
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Globally, one of the major technologic goals is to achieve cost-effective lignocellulosic ethanol production from biomass feedstocks. Lignocellulosic biomass of four dedicated energy crops [giant reed (Arundo donax L.), elephantgrass (Pennisetum purpureum (Schumach), Miscanthus x giganteus (Illinois clone), and (clone Q42641) {hybrid of Miscanthus sinensis Anderss. and Miscanthus sacchariflorus (Maxim)}, Hack. called giant miscanthus, and sugarcane clone US 84-1028 (Saccharum L. spp. hybrid)] and residues from two crops [soybean (Glycine max (L.) Merr.) litter and rice (Oryza sativa L.) husk] were tested for bioethanol production using cellulose solvent-based lignocellulose fractionation (CSLF) pretreatment and enzymatic (cellulase) hydrolysis. Giant miscanthus (Illinois), giant reed, giant miscanthus (Q42641), elephantgrass, and sugarcane all yielded higher amount of glucose on a biomass dry weight basis (0.290-0.331 g/g), than did rice husk (0.181 g/g) and soybean litter (0.186 g/g). To reduce the capital investment for energy consumption in fermentation, we used a self-flocculating yeast strain (SPSC01) to ferment the lignocellulosic biomass hydrolysates. Bioethanol production was similar to 0.1 g/g in dedicated energy crops and less in two crop residues. These methods and data can help to develop a cost-effective downstream process for bioethanol production.
引用
收藏
页码:66 / 73
页数:8
相关论文
共 19 条
[1]   Ethanol fermentation technologies from sugar and starch feedstocks [J].
Bai, F. W. ;
Anderson, W. A. ;
Moo-Young, M. .
BIOTECHNOLOGY ADVANCES, 2008, 26 (01) :89-105
[2]   Dry matter partitioning and quality of Miscanthus, Panicum, and Saccharum genotypes in Arkansas, USA [J].
Burner, David M. ;
Tew, Thomas L. ;
Harvey, Jonathan J. ;
Belesky, David P. .
BIOMASS & BIOENERGY, 2009, 33 (04) :610-619
[3]   Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: Effects of culture medium and growth stage [J].
Condori, Jose ;
Sivakumar, Ganapathy ;
Hubstenberger, John ;
Dolan, Maureen C. ;
Sobolev, Victor S. ;
Medina-Bolivar, Fabricio .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2010, 48 (05) :310-318
[4]   Ethanol can contribute to energy and environmental goals [J].
Farrell, AE ;
Plevin, RJ ;
Turner, BT ;
Jones, AD ;
O'Hare, M ;
Kammen, DM .
SCIENCE, 2006, 311 (5760) :506-508
[5]  
Foster C.E., 2010, JOVE-J VIS EXP, V37, DOI DOI 10.3791/1745
[6]   Impacts of temperature, pH, divalent cations, sugars and ethanol on the flocculating of SPSC01 [J].
Ge, X. M. ;
Zhang, L. ;
Bai, F. W. .
ENZYME AND MICROBIAL TECHNOLOGY, 2006, 39 (04) :783-787
[7]   Intrinsic kinetics of continuous growth and ethanol production of a flocculating fusant yeast strain SPSC01 [J].
Ge, X. M. ;
Bai, F. W. .
JOURNAL OF BIOTECHNOLOGY, 2006, 124 (02) :363-372
[8]   Impacts of yeast floc size distributions on their observed rates for substrate uptake and product formation [J].
Ge, X. M. ;
Zhang, L. ;
Bai, F. W. .
ENZYME AND MICROBIAL TECHNOLOGY, 2006, 39 (02) :289-295
[9]   Online monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation [J].
Ge, XM ;
Zhao, XQ ;
Bai, FW .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 90 (05) :523-531
[10]   Techno-economic analysis of lignocellulosic ethanol: A review [J].
Gnansounou, Edgard ;
Dauriat, Arnaud .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4980-4991