Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: A comparison of simulation techniques

被引:177
作者
Filion, L. [1 ]
Hermes, M. [1 ]
Ni, R. [1 ]
Dijkstra, M. [1 ]
机构
[1] Univ Utrecht, Debye Inst NanoMat Sci, NL-3584 CA Utrecht, Netherlands
关键词
FREE-ENERGY; COMPUTER-SIMULATION; CRYSTALLIZATION; SUSPENSIONS; ENTROPY; PREDICTION; PRESSURE; KINETICS; SYSTEM;
D O I
10.1063/1.3506838
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Over the last number of years several simulation methods have been introduced to study rare events such as nucleation. In this paper we examine the crystal nucleation rate of hard spheres using three such numerical techniques: molecular dynamics, forward flux sampling, and a Bennett-Chandler-type theory where the nucleation barrier is determined using umbrella sampling simulations. The resulting nucleation rates are compared with the experimental rates of Harland and van Megen [Phys. Rev. E 55, 3054 (1997)], Sinn et al. [Prog. Colloid Polym. Sci. 118, 266 (2001)], Schatzel and Ackerson [Phys. Rev. E 48, 3766 (1993)], and the predicted rates for monodisperse and 5% polydisperse hard spheres of Auer and Frenkel [Nature 409, 1020 (2001)]. When the rates are examined in units of the long-time diffusion coefficient, we find agreement between all the theoretically predicted nucleation rates, however, the experimental results display a markedly different behavior for low supersaturation. Additionally, we examined the precritical nuclei arising in the molecular dynamics, forward flux sampling, and umbrella sampling simulations. The structure of the nuclei appears independent of the simulation method, and in all cases, the nuclei contains on average significantly more face-centered-cubic ordered particles than hexagonal-close-packed ordered particles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3506838]
引用
收藏
页数:15
相关论文
共 43 条
[1]   STUDIES IN MOLECULAR DYNAMICS .1. GENERAL METHOD [J].
ALDER, BJ ;
WAINWRIGHT, TE .
JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (02) :459-466
[2]   Sampling rare switching events in biochemical networks [J].
Allen, RJ ;
Warren, PB ;
ten Wolde, PR .
PHYSICAL REVIEW LETTERS, 2005, 94 (01)
[3]   Forward flux sampling-type schemes for simulating rare events: Efficiency analysis [J].
Allen, Rosalind J. ;
Frenkel, Daan ;
ten Wolde, Pieter Rein .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (19)
[4]   Forward flux sampling for rare event simulations [J].
Allen, Rosalind J. ;
Valeriani, Chantal ;
ten Wolde, Pieter Rein .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (46)
[5]   Phase behavior and crystallization kinetics of poly-12-hydroxystearic-coated polymethylmethacrylate colloids [J].
Auer, S ;
Poon, WCK ;
Frenkel, D .
PHYSICAL REVIEW E, 2003, 67 (02) :4-204014
[6]   Numerical prediction of absolute crystallization rates in hard-sphere colloids [J].
Auer, S ;
Frenkel, D .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (06) :3015-3029
[7]   Crystallization of weakly charged colloidal spheres: a numerical study [J].
Auer, S ;
Frenkel, D .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (33) :7667-7680
[8]   Prediction of absolute crystal-nucleation rate in hard-sphere colloids [J].
Auer, S ;
Frenkel, D .
NATURE, 2001, 409 (6823) :1020-1023
[9]  
Auer S., 2002, THESIS U AMSTERDAM
[10]   Entropy difference between crystal phases [J].
Bolhuis, PG ;
Frenkel, D ;
Mau, SC ;
Huse, DA .
NATURE, 1997, 388 (6639) :235-236