Positive solutions for a class of boundary value problems with fractional q-differences

被引:154
作者
Ferreira, Rui A. C. [1 ]
机构
[1] Lusophone Univ Humanities & Technol, Dept Math, P-1749024 Lisbon, Portugal
关键词
Fractional q-difference equations; Boundary value problems; Positive solution; INTEGRALS;
D O I
10.1016/j.camwa.2010.11.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of positive solutions to the nonlinear q-fractional boundary value problem (D(q)(alpha)y)(x) = -f (x, y(x)), 0 <x < 1, y(0) = (D(q)y)(0) = 0, (D(q)y)(1) = beta >= 0, by applying a fixed point theorem in cones. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:367 / 373
页数:7
相关论文
共 32 条
  • [1] Agarwal R.P., 1999, POSITIVE SOLUTIONS D
  • [2] CERTAIN FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES
    AGARWAL, RP
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 : 365 - &
  • [3] SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES
    ALSALAM, WA
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 : 135 - &
  • [4] [Anonymous], ELECT J QUAL THEORY
  • [5] Fractional order differential equations on an unbounded domain
    Arara, A.
    Benchohra, M.
    Hamidi, N.
    Nieto, J. J.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) : 580 - 586
  • [6] Atici F M., 2007, International Journal of Difference Equations, V2, P165
  • [7] Fractional q-calculus on a time scale
    Atici, Ferhan M.
    Eloe, Paul W.
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (03) : 333 - 344
  • [8] Atici FM, 2009, ELECTRON J QUAL THEO
  • [9] Modeling with fractional difference equations
    Atici, Ferhan M.
    Senguel, Sevgi
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) : 1 - 9
  • [10] Atici FM, 2009, P AM MATH SOC, V137, P981