Positive solutions for a class of boundary value problems with fractional q-differences

被引:158
作者
Ferreira, Rui A. C. [1 ]
机构
[1] Lusophone Univ Humanities & Technol, Dept Math, P-1749024 Lisbon, Portugal
关键词
Fractional q-difference equations; Boundary value problems; Positive solution; INTEGRALS;
D O I
10.1016/j.camwa.2010.11.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of positive solutions to the nonlinear q-fractional boundary value problem (D(q)(alpha)y)(x) = -f (x, y(x)), 0 <x < 1, y(0) = (D(q)y)(0) = 0, (D(q)y)(1) = beta >= 0, by applying a fixed point theorem in cones. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:367 / 373
页数:7
相关论文
共 32 条
[1]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[2]   CERTAIN FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
AGARWAL, RP .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 :365-&
[3]   SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
ALSALAM, WA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 :135-&
[4]  
[Anonymous], ELECT J QUAL THEORY
[5]   Fractional order differential equations on an unbounded domain [J].
Arara, A. ;
Benchohra, M. ;
Hamidi, N. ;
Nieto, J. J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :580-586
[6]  
Atici F M., 2007, International Journal of Difference Equations, V2, P165
[7]   Fractional q-calculus on a time scale [J].
Atici, Ferhan M. ;
Eloe, Paul W. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (03) :333-344
[8]  
Atici FM, 2009, ELECTRON J QUAL THEO
[9]   Modeling with fractional difference equations [J].
Atici, Ferhan M. ;
Senguel, Sevgi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) :1-9
[10]  
Atici FM, 2009, P AM MATH SOC, V137, P981