Real-World, Real-Time Robotic Grasping with Convolutional Neural Networks

被引:25
作者
Watson, Joe [1 ]
Hughes, Josie [1 ]
Iida, Fumiya [1 ]
机构
[1] Univ Cambridge, Dept Engn, Bioinspired Robot Lab, Cambridge, England
来源
TOWARDS AUTONOMOUS ROBOTIC SYSTEMS (TAROS 2017) | 2017年 / 10454卷
关键词
Grasping; Deep learning; Convolution Neural Networks; Manipulation;
D O I
10.1007/978-3-319-64107-2_50
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adapting to uncertain environments is a key obstacle in the development of robust robotic object manipulation systems, as there is a trade-off between the computationally expensive methods of handling the surrounding complexity, and the real-time requirement for practical operation. We investigate the use of Deep Learning to develop a real-time scheme on a physical robot. Using a Baxter Research Robot and Kinect sensor, a convolutional neural network (CNN) was trained in a supervised manner to regress grasping coordinates from RGB-D data. Compared to existing methods, regression via deep learning offered an efficient process that learnt generalised grasping features and processed the scene in real-time. The system achieved a successful grasp rate of 62% and a successful detection rate of 78% on a diverse set of physical objects across varying position and orientation, executing grasp detection in 1.8 s on a CPU machine and a complete physical grasp and move in 60 s on the robot.
引用
收藏
页码:617 / 626
页数:10
相关论文
共 50 条
  • [1] Robotic Arm Handling Based on Real-time Gender Recognition Using Convolutional Neural Networks
    Miranda, Leonel
    Jimenez, Daniel
    Benitez, Diego
    Perez, Noel
    Riofrio, Daniel
    Flores Moyano, Ricardo
    2022 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2022,
  • [2] Learning robust, real-time, reactive robotic grasping
    Morrison, Douglas
    Corke, Peter
    Leitner, Jurgen
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (2-3) : 183 - 201
  • [3] Convolutional and Recurrent Neural Networks for Real-time Data Classification
    Abroyan, Narek
    2017 SEVENTH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING TECHNOLOGY (INTECH 2017), 2017, : 42 - 45
  • [4] Convolutional neural networks for real-time epileptic seizure detection
    Achilles, Felix
    Tombari, Federico
    Belagiannis, Vasileios
    Loesch, Anna Mira
    Noachtar, Soheyl
    Navab, Nassir
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03) : 264 - 269
  • [5] Real-time polyp detection model using convolutional neural networks
    Alba Nogueira-Rodríguez
    Rubén Domínguez-Carbajales
    Fernando Campos-Tato
    Jesús Herrero
    Manuel Puga
    David Remedios
    Laura Rivas
    Eloy Sánchez
    Águeda Iglesias
    Joaquín Cubiella
    Florentino Fdez-Riverola
    Hugo López-Fernández
    Miguel Reboiro-Jato
    Daniel Glez-Peña
    Neural Computing and Applications, 2022, 34 : 10375 - 10396
  • [6] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Campos-Tato, Fernando
    Herrero, Jesus
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sanchez, Eloy
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Lopez-Fernandez, Hugo
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13) : 10375 - 10396
  • [7] A Real-Time Robotic Grasping Approach With Oriented Anchor Box
    Zhang, Hanbo
    Zhou, Xinwen
    Lan, Xuguang
    Li, Jin
    Tian, Zhiqiang
    Zheng, Nanning
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (05): : 3014 - 3025
  • [8] Real-time vehicle type classification with deep convolutional neural networks
    Wang, Xinchen
    Zhang, Weiwei
    Wu, Xuncheng
    Xiao, Lingyun
    Qian, Yubin
    Fang, Zhi
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (01) : 5 - 14
  • [9] Real-time vehicle type classification with deep convolutional neural networks
    Xinchen Wang
    Weiwei Zhang
    Xuncheng Wu
    Lingyun Xiao
    Yubin Qian
    Zhi Fang
    Journal of Real-Time Image Processing, 2019, 16 : 5 - 14
  • [10] Real-time tomographic reconstructor based on convolutional neural networks for solar observation
    Sanchez Lasheras, Fernando
    Ordonez, Celestino
    Roca-Pardinas, Javier
    de Cos Juez, Francisco Javier
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (14) : 8032 - 8041