Atomic-Scale Investigation of Graphene Grown on Cu Foil and the Effects of Thermal Annealing

被引:133
|
作者
Cho, Jongweon [1 ]
Gao, Li [1 ]
Tian, Jifa [2 ,3 ]
Cao, Helin [2 ,3 ]
Wu, Wei [4 ,5 ]
Yu, Qingkai [5 ]
Yitamben, Esmeralda N. [1 ]
Fisher, Brandon [1 ]
Guest, Jeffrey R. [1 ]
Chen, Yong P. [2 ,3 ]
Guisinger, Nathan P. [1 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[2] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Univ Houston, Ctr Adv Mat, Houston, TX 77204 USA
[5] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
基金
美国国家科学基金会;
关键词
graphene; chemical vapor deposition; Cu foil; scanning tunneling microscopy; Moire pattern; corrosion; surface oxide; GRAPHITE; FILMS; PHASE;
D O I
10.1021/nn103338g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have investigated the effects of thermal annealing on ex-situ chemically vapor deposited submonolayer graphene islands on polycrystalline Cu foil at the atomic-scale using ultrahigh vacuum scanning tunneling microscopy. Low-temperature annealed graphene islands on Cu foil (at similar to 430 degrees C) exhibit predominantly striped Moire patterns, indicating a relatively weak interaction between graphene and the underlying polycrystalline Cu foil. Rapid high-temperature annealing of the simple (at 700-800 degrees C) gives rise to the removal of Cu oxide and the recovery of crystallographic features of the copper that surrounds the intact graphene. These experimental observations of continuous crystalline features between the underlying copper (beneath the graphene islands). and the surrounding exposed copper areas revealed by high-temperature annealing demonstrates the impenetrable nature of graphene and its potential application as a protective layer against corrosion.
引用
收藏
页码:3607 / 3613
页数:7
相关论文
共 50 条
  • [41] Atomic-scale finite element modelling of mechanical behaviour of graphene nanoribbons
    Damasceno, D. A.
    Mesquita, E.
    Rajapakse, R. K. N. D.
    Pavanello, R.
    INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2019, 15 (01) : 145 - 157
  • [42] Electric-Carrying Nanofriction Properties of Atomic-Scale Steps on Graphene
    Zhang, Yuxiang
    Peng, Yitian
    Lang, Haojie
    Huang, Yao
    Cao, Xing'an
    TRIBOLOGY LETTERS, 2020, 68 (04)
  • [43] Electric-Carrying Nanofriction Properties of Atomic-Scale Steps on Graphene
    Yuxiang Zhang
    Yitian Peng
    Haojie Lang
    Yao Huang
    Xing’an Cao
    Tribology Letters, 2020, 68
  • [44] Simulation of Atomic-Scale Wear of Graphite - Nanotip Induced Graphene Formation
    Sasaki, Naruo
    Saitoh, Hirooki
    Terada, Kazuki
    Itamura, Noriaki
    Miura, Kouji
    E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2009, 7 : 173 - 180
  • [45] In situ atomic-scale observation of monolayer graphene growth from SiC
    Kaihao Yu
    Wen Zhao
    Xing Wu
    Jianing Zhuang
    Xiaohui Hu
    Qiubo Zhang
    Jun Sun
    Tao Xu
    Yang Chai
    Feng Ding
    Litao Sun
    Nano Research, 2018, 11 : 2809 - 2820
  • [46] Atomic-scale finite element modelling of mechanical behaviour of graphene nanoribbons
    D. A. Damasceno
    E. Mesquita
    R. K. N. D. Rajapakse
    R. Pavanello
    International Journal of Mechanics and Materials in Design, 2019, 15 : 145 - 157
  • [47] Towards an atomic-scale understanding of interface characteristics in graphene/Al composites
    Teng, Haoyu
    Jiang, Yuanyuan
    Tan, Zhanqiu
    Liu, Pan
    Fan, Genlian
    Xiong, Ding-Bang
    Li, Zhiqiang
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [48] Atomic-scale model for the contact resistance of the nickel-graphene interface
    Stokbro, Kurt
    Engelund, Mads
    Blom, Anders
    PHYSICAL REVIEW B, 2012, 85 (16):
  • [49] Effect of relative humidity on the frictional properties of graphene at atomic-scale steps
    Lang, Haojie
    Peng, Yitian
    Zeng, Xingzhong
    Cao, Xing'an
    Liu, Lei
    Zou, Kun
    CARBON, 2018, 137 : 519 - 526
  • [50] Atomic-scale investigation of carbon-based materials by gentle transmission electron microscopy
    Liu, Pei-zhi
    Hao, Bing
    Zhang, Hai-xia
    Xu, Bing-she
    Guo, Jun-jie
    NEW CARBON MATERIALS, 2021, 36 (03) : 497 - 508