Atomic-Scale Investigation of Graphene Grown on Cu Foil and the Effects of Thermal Annealing

被引:134
|
作者
Cho, Jongweon [1 ]
Gao, Li [1 ]
Tian, Jifa [2 ,3 ]
Cao, Helin [2 ,3 ]
Wu, Wei [4 ,5 ]
Yu, Qingkai [5 ]
Yitamben, Esmeralda N. [1 ]
Fisher, Brandon [1 ]
Guest, Jeffrey R. [1 ]
Chen, Yong P. [2 ,3 ]
Guisinger, Nathan P. [1 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[2] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Univ Houston, Ctr Adv Mat, Houston, TX 77204 USA
[5] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
基金
美国国家科学基金会;
关键词
graphene; chemical vapor deposition; Cu foil; scanning tunneling microscopy; Moire pattern; corrosion; surface oxide; GRAPHITE; FILMS; PHASE;
D O I
10.1021/nn103338g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have investigated the effects of thermal annealing on ex-situ chemically vapor deposited submonolayer graphene islands on polycrystalline Cu foil at the atomic-scale using ultrahigh vacuum scanning tunneling microscopy. Low-temperature annealed graphene islands on Cu foil (at similar to 430 degrees C) exhibit predominantly striped Moire patterns, indicating a relatively weak interaction between graphene and the underlying polycrystalline Cu foil. Rapid high-temperature annealing of the simple (at 700-800 degrees C) gives rise to the removal of Cu oxide and the recovery of crystallographic features of the copper that surrounds the intact graphene. These experimental observations of continuous crystalline features between the underlying copper (beneath the graphene islands). and the surrounding exposed copper areas revealed by high-temperature annealing demonstrates the impenetrable nature of graphene and its potential application as a protective layer against corrosion.
引用
收藏
页码:3607 / 3613
页数:7
相关论文
共 50 条
  • [21] Atomic-Scale Control of Coherent Thermal Radiation
    Zhao, Bo
    Song, Jung-Hwan
    Brongersma, Mark
    Fan, Shanhui
    ACS PHOTONICS, 2021, 8 (03) : 872 - 878
  • [22] Technetium incorporation into goethite: An atomic-scale investigation
    Smith, Frances
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [23] Role of atomic-scale thermal fluctuations in the coercivity
    Toga, Yuta
    Miyashita, Seiji
    Sakuma, Akimasa
    Miyake, Takashi
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [24] Role of atomic-scale thermal fluctuations in the coercivity
    Yuta Toga
    Seiji Miyashita
    Akimasa Sakuma
    Takashi Miyake
    npj Computational Materials, 6
  • [25] Anisotropy Effects in Atomic-Scale Friction
    Gnecco, Enrico
    Fajardo, Oscar Y.
    Pina, Carlos M.
    Mazo, Juan J.
    TRIBOLOGY LETTERS, 2012, 48 (01) : 33 - 39
  • [26] Anisotropy Effects in Atomic-Scale Friction
    Enrico Gnecco
    Oscar Y. Fajardo
    Carlos M. Pina
    Juan J. Mazo
    Tribology Letters, 2012, 48 : 33 - 39
  • [27] Atomic-scale magnetism of cobalt-intercalated graphene
    Decker, Regis
    Brede, Jens
    Atodiresei, Nicolae
    Caciuc, Vasile
    Bluegel, Stefan
    Wiesendanger, Roland
    PHYSICAL REVIEW B, 2013, 87 (04)
  • [28] Noise diagnostics of graphene interconnects for atomic-scale electronics
    László Pósa
    Zoltán Balogh
    Dávid Krisztián
    Péter Balázs
    Botond Sánta
    Roman Furrer
    Miklós Csontos
    András Halbritter
    npj 2D Materials and Applications, 5
  • [29] Atomic-scale mechanism of grain boundary motion in graphene
    Kim, Dongwook
    Kim, Youngkuk
    Ihm, Jisoon
    Yoon, Euijoon
    Lee, Gun-Do
    Carbon, 2015, 84 (0C) : 146 - 150
  • [30] Atomic-Scale Interfacial Magnetism in Fe/Graphene Heterojunction
    W. Q. Liu
    W. Y. Wang
    J. J. Wang
    F. Q. Wang
    C. Lu
    F. Jin
    A. Zhang
    Q. M. Zhang
    G. van der Laan
    Y. B. Xu
    Q. X. Li
    R. Zhang
    Scientific Reports, 5