DIRAC EIGENVALUES ESTIMATES IN TERMS OF DIVERGENCEFREE SYMMETRIC TENSORS

被引:6
|
作者
Kim, Eui Chul [1 ]
机构
[1] Andong Natl Univ, Coll Educ, Dept Math, Andong 760749, South Korea
关键词
Dirac operator; eigenvalues; divergencefree symmetric tensors; OPERATOR; MANIFOLDS; TORSION; SPINORS;
D O I
10.4134/BKMS.2009.46.5.949
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We proved in [10] that Friedrich's estimate [5] for the first eigenvalue of the Dirac operator can be improved when a Codazzi tensor exists. In the paper we further prove that his estimate can be improved as well via a well-chosen divergencefree symmetric tensor. We study the geometric implication of the new first eigenvalue estimates over Sasakian spin manifolds and show that some particular types of spinors appear as the limiting case.
引用
收藏
页码:949 / 966
页数:18
相关论文
共 50 条
  • [1] Eigenvalues estimates for the Dirac operator in terms of Codazzi tensors
    Friedrich, Thomas
    Kim, Eui Chul
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) : 365 - 373
  • [2] THE MULTIVARIATE EIGENVALUES OF SYMMETRIC TENSORS
    Zhou, Anwa
    Ni, Yangyang
    Fan, Jinyan
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2024, 45 (04) : 1954 - 1977
  • [3] ALL REAL EIGENVALUES OF SYMMETRIC TENSORS
    Cui, Chun-Feng
    Dai, Yu-Hong
    Nie, Jiawang
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (04) : 1582 - 1601
  • [4] General relativity in terms of Dirac eigenvalues
    Landi, G
    Rovelli, C
    PHYSICAL REVIEW LETTERS, 1997, 78 (16) : 3051 - 3054
  • [5] Euclidean supergravity in terms of Dirac eigenvalues
    Vancea, IV
    PHYSICAL REVIEW D, 1998, 58 (04):
  • [6] Extrinsic estimates for eigenvalues of the Dirac operator
    Chen, Daguang
    MATHEMATISCHE ZEITSCHRIFT, 2009, 262 (02) : 349 - 361
  • [7] Computing the generalized eigenvalues of weakly symmetric tensors
    Na Zhao
    Qingzhi Yang
    Yajun Liu
    Computational Optimization and Applications, 2017, 66 : 285 - 307
  • [8] Computing the generalized eigenvalues of weakly symmetric tensors
    Zhao, Na
    Yang, Qingzhi
    Liu, Yajun
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 66 (02) : 285 - 307
  • [9] Extrinsic estimates for eigenvalues of the Dirac operator
    Daguang Chen
    Mathematische Zeitschrift, 2009, 262
  • [10] NEW ESTIMATES FOR EIGENVALUES OF THE BASIC DIRAC OPERATOR
    Dal Jung, Seoung
    Kim, Soon Chan
    Park, Jeong Hyeong
    TOHOKU MATHEMATICAL JOURNAL, 2009, 61 (04) : 441 - 453