Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions

被引:6
作者
Cardoso, W. B. [1 ]
Avelar, A. T. [1 ]
Bazeia, D. [2 ]
机构
[1] Univ Fed Goias, Inst Fis, BR-74690900 Goiania, Go, Brazil
[2] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
关键词
Solitons collisions; Nonlinear Schrodinger equation; Chaotic nonlinearity; Logistic map; SCHRODINGER-EQUATION; LOCALIZED SOLUTIONS; MODULATION; SOLITONS; DYNAMICS; WAVES;
D O I
10.1007/s11071-021-06962-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrodinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its seed and the interaction parameter, one can observe a disorder in the nonlinearity of the system. This disorder was varied by changing the parameter values and controlled via the Lyapunov exponent, however, always maintaining a fixed amplitude. We verified a direct relationship between the value of the Lyapunov coefficient and the formation of two-soliton bonded/unbonded states.
引用
收藏
页码:3469 / 3477
页数:9
相关论文
共 53 条
[1]  
Ablowitz M. J., 1991, SOLITONS NONLINEAR E
[2]   Modulation of breathers in the three-dimensional nonlinear Gross-Pitaevskii equation [J].
Avelar, A. T. ;
Bazeia, D. ;
Cardoso, W. B. .
PHYSICAL REVIEW E, 2010, 82 (05)
[3]   Lump-like structures in scalar-field models in 1+1 dimensions [J].
Avelar, A. T. ;
Bazeia, D. ;
Cardoso, W. B. ;
Losano, L. .
PHYSICS LETTERS A, 2009, 374 (02) :222-227
[4]   Solitons with cubic and quintic nonlinearities modulated in space and time [J].
Avelar, A. T. ;
Bazeia, D. ;
Cardoso, W. B. .
PHYSICAL REVIEW E, 2009, 79 (02)
[5]   Localized nonlinear waves in systems with time- and space-modulated nonlinearities [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Vekslerchik, Vadym ;
Konotop, Vladimir V. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[6]   Modulation of localized solutions for the Schrodinger equation with logarithm nonlinearity [J].
Calaca, L. ;
Avelar, A. T. ;
Bazeia, D. ;
Cardoso, W. B. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2928-2934
[7]   Bright solitons from the nonpolynomial Schrodinger equation with inhomogeneous defocusing nonlinearities [J].
Cardoso, W. B. ;
Zeng, J. ;
Avelar, A. T. ;
Bazeia, D. ;
Malomed, B. A. .
PHYSICAL REVIEW E, 2013, 88 (02)
[8]   Modulation of localized solutions in a system of two coupled nonlinear Schrodinger equations [J].
Cardoso, W. B. ;
Avelar, A. T. ;
Bazeia, D. .
PHYSICAL REVIEW E, 2012, 86 (02)
[9]   Anderson localization of matter waves in chaotic potentials [J].
Cardoso, W. B. ;
Avelar, A. T. ;
Bazeia, D. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) :755-763
[10]   One-dimensional reduction of the three-dimenstional Gross-Pitaevskii equation with two- and three-body interactions [J].
Cardoso, W. B. ;
Avelar, A. T. ;
Bazeia, D. .
PHYSICAL REVIEW E, 2011, 83 (03)