Flux and energy analysis of species in hollow cathode magnetron ionized physical vapor deposition of copper

被引:16
|
作者
Wu, L. [1 ]
Ko, E. [1 ]
Dulkin, A. [1 ]
Park, K. J. [1 ]
Fields, S. [1 ]
Leeser, K. [1 ]
Meng, L. [2 ]
Ruzic, D. N. [2 ]
机构
[1] Novellus Syst Inc, San Jose, CA 95134 USA
[2] Univ Illinois, Ctr Plasma Mat Interact, Urbana, IL 61801 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2010年 / 81卷 / 12期
基金
美国国家科学基金会;
关键词
LANGMUIR PROBE; IONIZATION FRACTION; ION ENERGY; PLASMA; DISCHARGES; DISTRIBUTIONS; DIAGNOSTICS; ANALYZER; MASS;
D O I
10.1063/1.3504371
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
To meet the stringent requirements of interconnect metallization for sub-32 nm technologies, an unprecedented level of flux and energy control of film forming species has become necessary to further advance ionized physical vapor deposition technology. Such technology development mandates improvements in methods to quantify the metal ion fraction, the gas/metal ion ratio, and the associated ion energies in the total ion flux to the substrate. In this work, a novel method combining planar Langmuir probes, quartz crystal microbalance (QCM), and gridded energy analyzer (GEA) custom instrumentation is developed to estimate the plasma density and temperature as well as to measure the metal ion fraction and ion energy. The measurements were conducted in a Novellus Systems, Inc. Hollow Cathode Magnetron (HCM (TM)) physical vapor deposition source used for deposition of Cu seed layer for 65-130 nm technology nodes. The gridded energy analyzer was employed to measure ion flux and ion energy, which was compared to the collocated planar Langmuir probe data. The total ion-to-metal neutral ratio was determined by the QCM combined with GEA. The data collection technique and the corresponding analysis are discussed. The effect of concurrent resputtering during the deposition process on film thickness profile is also discussed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3504371]
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Ionized physical-vapor deposition using a hollow-cathode magnetron source for advanced metallization
    Klawuhn, E
    D'Couto, GC
    Ashtiani, KA
    Rymer, P
    Biberger, MA
    Levy, KB
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 2000, 18 (04): : 1546 - 1549
  • [2] Scaling of hollow cathode magnetrons for ionized metal physical vapor deposition
    Vyas, Vivek
    Kushner, Mark J.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2006, 24 (05): : 1955 - 1969
  • [3] Comparing ionized physical vapor deposition and high power magnetron copper seed deposition
    Stout, PJ
    Zhang, D
    Rauf, S
    Ventzek, PLG
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (06): : 2421 - 2432
  • [4] In situ physical vapor deposition of ionized Ti and TiN thin films using hollow cathode magnetron plasma source
    D'Couto, GC
    Tkach, G
    Ashtiani, KA
    Hartsough, L
    Kim, E
    Mulpuri, R
    Lee, DB
    Levy, K
    Fissel, M
    Choi, S
    Choi, SM
    Lee, HD
    Kang, HK
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (01): : 244 - 249
  • [5] Energy flux to the substrate in a magnetron discharge with hollow cathode
    Poluektov, N. P.
    Tsar'gorodsev, Yu P.
    Usatov, I. I.
    Evstigneev, A. G.
    THIN SOLID FILMS, 2017, 640 : 60 - 66
  • [6] Ionized physical vapor deposition (IPVD): Magnetron sputtering discharges
    Gudmundsson, J. T.
    PROCEEDINGS OF THE 17TH INTERNATIONAL VACUUM CONGRESS/13TH INTERNATIONAL CONFERENCE ON SURFACE SCIENCE/INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2008, 100 (PART 8):
  • [7] Ionized sputtering with a pulsed hollow cathode magnetron
    Fietzke, Fred
    Kraetzschmar, Bernd-Georg
    THIN SOLID FILMS, 2014, 572 : 147 - 152
  • [8] Design issues in ionized metal physical vapor deposition of copper
    Grapperhaus, MJ
    Krivokapic, Z
    Kushner, MJ
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (01) : 35 - 43
  • [9] Improving the quality of barrier/seed interface by optimizing physical vapor deposition of Cu Film in hollow cathode magnetron
    Dulkin, A.
    Ko, E.
    Wu, L.
    Karim, I.
    Leeser, K.
    Park, K. J.
    Meng, L.
    Ruzic, D. N.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2011, 29 (04):
  • [10] Guiding the deposition flux in an ionized magnetron discharge
    Bohlmark, J.
    Ostbye, M.
    Lattemann, M.
    Ljunguantz, H.
    Rosell, T.
    Helmersson, U.
    THIN SOLID FILMS, 2006, 515 (04) : 1928 - 1931