KGBoost: A classification-based knowledge base completion method with negative sampling

被引:7
作者
Wang, Yun-Cheng [1 ]
Ge, Xiou [1 ]
Wang, Bin [2 ]
Kuo, C-C Jay [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
[2] Natl Univ Singapore, Singapore, Singapore
关键词
Knowledge base completion; Negative sampling; Binary classification; XGBoost Classifiers;
D O I
10.1016/j.patrec.2022.04.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge base completion is formulated as a binary classification problem in this work, where an XGBoost binary classifier is trained for each relation using relevant links in knowledge graphs (KGs). The new method, named KGBoost, adopts a modularized design and attempts to find hard negative samples so as to train a powerful classifier for missing link prediction. We conduct experiments on multiple benchmark datasets and demonstrate that KGBoost outperforms state-of-the-art methods across most datasets. Furthermore, as compared with models trained by end-to-end optimization, KGBoost works well under the low-dimensional setting so as to allow a smaller model size. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 111
页数:8
相关论文
共 27 条
  • [1] Bollacker K., 2008, SIGMOD C, P1247, DOI [10.1145/1376616.1376746, DOI 10.1145/1376616.1376746]
  • [2] Bordes A., 2013, ADV NEURAL INFORM PR, V26
  • [3] A semantic matching energy function for learning with multi-relational data Application to word-sense disambiguation
    Bordes, Antoine
    Glorot, Xavier
    Weston, Jason
    Bengio, Yoshua
    [J]. MACHINE LEARNING, 2014, 94 (02) : 233 - 259
  • [4] Cai L., 2018, P 2018 C N AM CHAPTE, V1
  • [5] Carlson A., ARCHITECTURE NEVER E
  • [6] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [7] Efficient data reconciliation
    Cochinwala, M
    Kurien, V
    Lalk, G
    Shasha, D
    [J]. INFORMATION SCIENCES, 2001, 137 (1-4) : 1 - 15
  • [8] Dettmers T, 2018, AAAI CONF ARTIF INTE, P1811
  • [9] Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion
    Dong, Xin Luna
    Gabrilovich, Evgeniy
    Heitz, Geremy
    Horn, Wilko
    Lao, Ni
    Murphy, Kevin
    Strohmann, Thomas
    Sun, Shaohua
    Zhang, Wei
    [J]. PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 601 - 610
  • [10] Fürnkranz J, 2002, LECT NOTES ARTIF INT, V2430, P97