Photoactivation of Luminescent Centers in Single SiO2 Nanoparticles

被引:27
作者
Tarpani, Luigi [1 ,2 ]
Ruhlandt, Daja [3 ]
Latterini, Loredana [1 ,2 ]
Haehnel, Dirk [3 ]
Gregor, Ingo [3 ]
Enderlein, Joerg [3 ]
Chizhik, Alexey I. [3 ]
机构
[1] Univ Perugia, Dipartimento Chim Biol & Biotecnol, Via Elce di Sotto 8, I-06123 Perugia, Italy
[2] Ctr Eccellenza Mat Innovativi Nanostrutturati, Via Elce di Sotto 8, I-06123 Perugia, Italy
[3] Univ Gottingen, Inst Phys 3, D-37077 Gottingen, Germany
关键词
Luminescent centers; nano-optics; fluorescence activation; fluorescence microscopy; photobleaching; single molecule spectroscopy; MAGNETIC-RESONANCE; SILICA; PHOTOLUMINESCENCE; MICROSCOPY; FLUORESCENCE; EXCITONS;
D O I
10.1021/acs.nanolett.6b01361
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photobleaching of fluorophores is one of the key problems in fluorescence microscopy. Overcoming the limitation of the maximum number of photons, which can be detected from a single emitter, would allow one to enhance the signal-to-noise ratio and thus the temporal and spatial resolution in fluorescence imaging. It would be a breakthrough for many applications of fluorescence spectroscopy, which are unachievable up to now. So far, the only approach for diminishing the effect of photobleaching has been to enhance the photostability of an emitter. Here, we present a fundamentally new solution for increasing the number of photons emitted by a fluorophore. We show that, by exposing a single SiO2 nanoparticle to UV illumination, one can create new luminescent centers within this particle. By analogy with nanodiamonds, SiO2 nanoparticles can possess luminescent defects in their regular SiO2 structure. However, due to the much weaker chemical bonds, it is possible to generate new defects in SiO2 nanostructures using UV light. This allows for the reactivation of the nanoparticle's fluorescence after its photobleaching.
引用
收藏
页码:4312 / 4316
页数:5
相关论文
共 38 条
[21]   The electronic structure at the atomic scale of ultrathin gate oxides [J].
Muller, DA ;
Sorsch, T ;
Moccio, S ;
Baumann, FH ;
Evans-Lutterodt, K ;
Timp, G .
NATURE, 1999, 399 (6738) :758-761
[22]   VARIOUS TYPES OF NONBRIDGING OXYGEN HOLE CENTER IN HIGH-PURITY SILICA GLASS [J].
MUNEKUNI, S ;
YAMANAKA, T ;
SHIMOGAICHI, Y ;
TOHMON, R ;
OHKI, Y ;
NAGASAWA, K ;
HAMA, Y .
JOURNAL OF APPLIED PHYSICS, 1990, 68 (03) :1212-1217
[23]   THEORY OF DEFECTS IN VITREOUS SILICON DIOXIDE [J].
OREILLY, EP ;
ROBERTSON, J .
PHYSICAL REVIEW B, 1983, 27 (06) :3780-3795
[24]   A hybridization model for the plasmon response of complex nanostructures [J].
Prodan, E ;
Radloff, C ;
Halas, NJ ;
Nordlander, P .
SCIENCE, 2003, 302 (5644) :419-422
[25]   Size-dependent physicochemical and optical properties of silica nanoparticles [J].
Rahman, I. A. ;
Vejayakumaran, P. ;
Sipaut, C. S. ;
Ismail, J. ;
Chee, C. K. .
MATERIALS CHEMISTRY AND PHYSICS, 2009, 114 (01) :328-332
[26]   Single plasmonic nanoparticles for biosensing [J].
Sannomiya, Takumi ;
Voeroes, Janos .
TRENDS IN BIOTECHNOLOGY, 2011, 29 (07) :343-351
[27]   Silica Nanoparticles as Substrates for Chelator-free Labeling of Oxophilic Radioisotopes [J].
Shaffer, Travis M. ;
Wall, Matthew A. ;
Harmsen, Stefan ;
Longo, Valerie A. ;
Drain, Charles Michael ;
Kircher, Moritz F. ;
Grimm, Jan .
NANO LETTERS, 2015, 15 (02) :864-868
[28]   Improving the photostability of bright monomeric orange and red fluorescent proteins [J].
Shaner, Nathan C. ;
Lin, Michael Z. ;
McKeown, Michael R. ;
Steinbach, Paul A. ;
Hazelwood, Kristin L. ;
Davidson, Michael W. ;
Tsien, Roger Y. .
NATURE METHODS, 2008, 5 (06) :545-551
[29]   Optically active oxygen-deficiency-related centers in amorphous silicon dioxide [J].
Skuja, L .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1998, 239 (1-3) :16-48
[30]   Biomedical applications of multifunctional plasmonic nanoparticles [J].
Sotiriou, Georgios A. .
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2013, 5 (01) :19-30