Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action

被引:153
作者
Yoshioka, K
Nakashita, H
Klessig, DF
Yamaguchi, I
机构
[1] RIKEN, Inst Phys & Chem Res, Microbial Toxicol Lab, Wako, Saitama 3510198, Japan
[2] Rutgers State Univ, Waksman Inst, Piscataway, NJ 08854 USA
[3] Rutgers State Univ, Dept Mol Biol & Biochem, Piscataway, NJ 08854 USA
关键词
probenazole; SAR activator; PR genes; SA;
D O I
10.1046/j.1365-313x.2001.00952.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Probenazole (PBZ; 3-allyloxy-1,2-benzisothiazole-1,1-dioxide) which is the active ingredient in Oryzemate, has been used widely in Asia to protect rice plants against the rice blast fungus Magnaporthe grisea. To study PBZ's mode of action, we analyzed its ability, as well as that of its active metabolite 1, 2-benzisothiazol-3 (2H)-one 1,1-dioxide (BIT) to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with PBZ or BIT exhibited increased expression of several pathogenesis-related genes, increased levels of total salicylic acid ISA), end enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC 3000 and the oomycete pathogen Peronospora parasitica Emco5. The role of several defense signaling hormones, such as SA, ethylene and jasmonic acid (JA), in activating resistance following PBZ or BIT treatment was analyzed using NahG transgenic plants and etr1-1 and coi1-1 mutant plants, respectively. In addition, the involvement of NPR1, a key component in the SA signaling pathway leading to defense responses, was assessed. PBZ or BIT treatment did not induce disease resistance or PR-1 expression in NahG transgenic or npr1 mutant plants, but it did activate these phenomena in etr1-1 and coi 1-1 mutant plants. Thus SA and NPR1 appear to be required for PBZ- and BIT-mediated activation of defense responses, while ethylene end JA are not. Furthermore, our data suggest that PBZ and BIT comprise a novel class of defense activators that stimulate the SA/NPR1-mediated defense signaling pathway upstream of SA.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 57 条
[1]  
[Anonymous], 1997, Plant relationships, DOI [10.1007/978-3-662-10370-8_7, DOI 10.1007/978-3-662-10370-8_7]
[2]   INSENSITIVITY TO ETHYLENE CONFERRED BY A DOMINANT MUTATION IN ARABIDOPSIS-THALIANA [J].
BLEECKER, AB ;
ESTELLE, MA ;
SOMERVILLE, C ;
KENDE, H .
SCIENCE, 1988, 241 (4869) :1086-1089
[3]   A MUTATION IN ARABIDOPSIS THAT LEADS TO CONSTITUTIVE EXPRESSION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
BOWLING, SA ;
GUO, A ;
CAO, H ;
GORDON, AS ;
KLESSIG, DF ;
DONG, XI .
PLANT CELL, 1994, 6 (12) :1845-1857
[4]   BIOLOGICALLY INDUCED SYSTEMIC ACQUIRED-RESISTANCE IN ARABIDOPSIS-THALIANA [J].
CAMERON, RK ;
DIXON, RA ;
LAMB, CJ .
PLANT JOURNAL, 1994, 5 (05) :715-725
[5]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[6]   ARABIDOPSIS ETHYLENE-RESPONSE GENE ETR1 - SIMILARITY OF PRODUCT TO 2-COMPONENT REGULATORS [J].
CHANG, C ;
KWOK, SF ;
BLEECKER, AB ;
MEYEROWITZ, EM .
SCIENCE, 1993, 262 (5133) :539-544
[7]  
CHERN MS, 1999, BIOL PLANT MOL INTER, V2, P254
[8]   The problem of acquired physiological immunity in plants (continued) [J].
Chester, KS .
QUARTERLY REVIEW OF BIOLOGY, 1933, 8 (03) :275-324
[9]   GENOMIC SEQUENCING [J].
CHURCH, GM ;
GILBERT, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (07) :1991-1995
[10]   2 INDUCERS OF PLANT DEFENSE RESPONSES, 2,6-DICHLOROISONICOTINIC ACID AND SALICYLIC-ACID, INHIBIT CATALASE ACTIVITY IN TOBACCO [J].
CONRATH, U ;
CHEN, ZX ;
RICIGLIANO, JR ;
KLESSIG, DF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7143-7147