ESCRT-III Membrane Trafficking Misregulation Contributes To Fragile X Syndrome Synaptic Defects

被引:12
|
作者
Vita, Dominic J. [1 ]
Broadie, Kendal [1 ,2 ,3 ]
机构
[1] Vanderbilt Univ, Dept Biol Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Kennedy Ctr Res Human Dev, 221 Kirkland Hall, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Vanderbilt Brain Inst, 221 Kirkland Hall, Nashville, TN 37235 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家卫生研究院;
关键词
MENTAL-RETARDATION PROTEIN; DROSOPHILA MODEL; SIGNALING PATHWAY; CGG REPEAT; COMPLEX; GENE; HOMOLOG; NOTCH; OVEREXPRESSION; REQUIREMENTS;
D O I
10.1038/s41598-017-09103-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The leading cause of heritable intellectual disability (ID) and autism spectrum disorders (ASD), Fragile X syndrome (FXS), is caused by loss of the mRNA-binding translational suppressor Fragile X Mental Retardation Protein (FMRP). In the Drosophila FXS disease model, we found FMRP binds shrub mRNA (human Chmp4) to repress Shrub expression, causing overexpression during the disease state early-use critical period. The FXS hallmark is synaptic overelaboration causing circuit hyperconnectivity. Testing innervation of a central brain learning/memory center, we found FMRP loss and Shrub overexpression similarly increase connectivity. The ESCRT-III core protein Shrub has a central role in endosome-to-multi-vesicular body membrane trafficking, with synaptic requirements resembling FMRP. Consistently, we found FMRP loss and Shrub overexpression similarly elevate endosomes and result in the arrested accumulation of enlarged intraluminal vesicles within synaptic boutons. Importantly, genetic correction of Shrub levels in the FXS model prevents synaptic membrane trafficking defects and strongly restores innervation. These results reveal a new molecular mechanism underpinning the FXS disease state.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Pharmacological Rescue of Cortical Synaptic and Network Potentiation in a Mouse Model for Fragile X Syndrome
    Chen, Tao
    Lu, Jing-Shan
    Song, Qian
    Liu, Ming-Gang
    Koga, Kohei
    Descalzi, Giannina
    Li, Yun-Qing
    Zhuo, Min
    NEUROPSYCHOPHARMACOLOGY, 2014, 39 (08) : 1955 - 1967
  • [42] Excess Translation of Epigenetic Regulators Contributes to Fragile X Syndrome and Is Alleviated by Brd4 Inhibition
    Korb, Erica
    Herre, Margaret
    Zucker-Scharff, Ilana
    Gresack, Jodi
    Allis, C. David
    Darnell, Robert B.
    CELL, 2017, 170 (06) : 1209 - 1223
  • [43] Which Comes First in Fragile X Syndrome, Dendritic Spine Dysgenesis or Defects in Circuit Plasticity?
    Portera-Cailliau, Carlos
    NEUROSCIENTIST, 2012, 18 (01) : 28 - 44
  • [44] In vivo synaptic transmission and morphology in mouse models of Tuberous sclerosis, Fragile X syndrome, Neurofibromatosis type 1, and Costello syndrome
    Wang, Tiantian
    de Kok, Laura
    Willemsen, Rob
    Elgersma, Ype
    Borst, J. Gerard G.
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2015, 9
  • [45] Activation of the extracellular signal-regulated kinase pathway contributes to the behavioral deficit of fragile x-syndrome
    Wang, Xinglong
    Snape, Mike
    Klann, Eric
    Stone, Jeremy G.
    Singh, Avneet
    Petersen, Robert B.
    Castellani, Rudy J.
    Casadesus, Gemma
    Smith, Mark A.
    Zhu, Xiongwei
    JOURNAL OF NEUROCHEMISTRY, 2012, 121 (04) : 672 - 679
  • [46] FMRP(1-297)-tat restores ion channel and synaptic function in a model of Fragile X syndrome
    Zhan, Xiaoqin
    Asmara, Hadhimulya
    Cheng, Ning
    Sahu, Giriraj
    Sanchez, Eduardo
    Zhang, Fang-Xiong
    Zamponi, Gerald W.
    Rho, Jong M.
    Turner, Ray W.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [47] Modulation of dendritic spines and synaptic function by Rac1: A possible link to Fragile X syndrome pathology
    Bongmba, Odelia Y. N.
    Martinez, Luis A.
    Elhardt, Mary E.
    Butler, Karlis
    Tejada-Simon, Maria V.
    BRAIN RESEARCH, 2011, 1399 : 79 - 95
  • [48] Wnd/DLK Is a Critical Target of FMRP Responsible for Neurodevelopmental and Behavior Defects in the Drosophila Model of Fragile X Syndrome
    Russo, Alexandra
    DiAntonio, Aaron
    CELL REPORTS, 2019, 28 (10): : 2581 - +
  • [49] Molecular Mechanisms Regulating the Defects in Fragile X Syndrome Neurons Derived from Human Pluripotent Stem Cells
    Halevy, Tomer
    Czech, Christian
    Benvenisty, Nissim
    STEM CELL REPORTS, 2015, 4 (01): : 37 - 46
  • [50] Pharmacological reversal of synaptic plasticity deficits in the mouse model of Fragile X syndrome by group II mGluR antagonist or lithium treatment
    Choi, Catherine H.
    Schoenfeld, Brian P.
    Bell, Aaron J.
    Hinchey, Paul
    Kollaros, Maria
    Gertner, Michael J.
    Woo, Newton H.
    Tranfaglia, Michael R.
    Bear, Mark F.
    Zukin, R. Suzanne
    McDonald, Thomas V.
    Jongens, Thomas A.
    McBride, Sean M. J.
    BRAIN RESEARCH, 2011, 1380 : 106 - 119