ESCRT-III Membrane Trafficking Misregulation Contributes To Fragile X Syndrome Synaptic Defects

被引:12
|
作者
Vita, Dominic J. [1 ]
Broadie, Kendal [1 ,2 ,3 ]
机构
[1] Vanderbilt Univ, Dept Biol Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Kennedy Ctr Res Human Dev, 221 Kirkland Hall, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Vanderbilt Brain Inst, 221 Kirkland Hall, Nashville, TN 37235 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家卫生研究院;
关键词
MENTAL-RETARDATION PROTEIN; DROSOPHILA MODEL; SIGNALING PATHWAY; CGG REPEAT; COMPLEX; GENE; HOMOLOG; NOTCH; OVEREXPRESSION; REQUIREMENTS;
D O I
10.1038/s41598-017-09103-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The leading cause of heritable intellectual disability (ID) and autism spectrum disorders (ASD), Fragile X syndrome (FXS), is caused by loss of the mRNA-binding translational suppressor Fragile X Mental Retardation Protein (FMRP). In the Drosophila FXS disease model, we found FMRP binds shrub mRNA (human Chmp4) to repress Shrub expression, causing overexpression during the disease state early-use critical period. The FXS hallmark is synaptic overelaboration causing circuit hyperconnectivity. Testing innervation of a central brain learning/memory center, we found FMRP loss and Shrub overexpression similarly increase connectivity. The ESCRT-III core protein Shrub has a central role in endosome-to-multi-vesicular body membrane trafficking, with synaptic requirements resembling FMRP. Consistently, we found FMRP loss and Shrub overexpression similarly elevate endosomes and result in the arrested accumulation of enlarged intraluminal vesicles within synaptic boutons. Importantly, genetic correction of Shrub levels in the FXS model prevents synaptic membrane trafficking defects and strongly restores innervation. These results reveal a new molecular mechanism underpinning the FXS disease state.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis
    Mierzwa, Beata E.
    Chiaruttini, Nicolas
    Redondo-Morata, Lorena
    von Filseck, Joachim Moser
    Koenig, Julia
    Larios, Jorge
    Poser, Ina
    Mueller-Reichert, Thomas
    Scheuring, Simon
    Roux, Aurelien
    Gerlich, Daniel W.
    NATURE CELL BIOLOGY, 2017, 19 (07) : 787 - +
  • [22] Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation
    Adell, Manuel Alonso Y.
    Vogel, Georg F.
    Pakdel, Mehrshad
    Mueller, Martin
    Lindner, Herbert
    Hess, Michael W.
    Teis, David
    JOURNAL OF CELL BIOLOGY, 2014, 205 (01) : 33 - 49
  • [23] Cage effects on synaptic plasticity and its modulation in a mouse model of fragile X syndrome
    Volianskis, Rasa
    Lundbye, Camilla J.
    Petroff, Gillian N.
    Jane, David. E.
    Georgiou, John
    Collingridge, Graham L.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2024, 379 (1906)
  • [24] Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome
    Deng, Pan-Yue
    Klyachko, Vitaly A.
    JOURNAL OF PHYSIOLOGY-LONDON, 2016, 594 (01): : 83 - 97
  • [25] Friction-driven membrane scission by the human ESCRT-III proteins CHMP1B and IST1
    Cada, A. King
    Pavlin, Mark R.
    Castillo, Juan P.
    Tong, Alexander B.
    Larsen, Kevin P.
    Ren, Xuefeng
    Yokom, Adam L.
    Tsai, Feng-Ching
    Shiah, Jamie, V
    Bassereau, Patricia M.
    Bustamante, Carlos J.
    Hurley, James H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (29)
  • [26] Hyperactive locomotion in a Drosophila model is a functional readout for the synaptic abnormalities underlying fragile X syndrome
    Kashima, Risa
    Redmond, Patrick L.
    Ghatpande, Prajakta
    Roy, Sougata
    Kornberg, Thomas B.
    Hanke, Thomas
    Knapp, Stefan
    Lagna, Giorgio
    Hata, Akiko
    SCIENCE SIGNALING, 2017, 10 (477)
  • [27] A Drosophila model of Fragile X syndrome exhibits defects in phagocytosis by innate immune cells
    O'Connor, Reed M.
    Stone, Elizabeth F.
    Wayne, Charlotte R.
    Marcinkevicius, Emily V.
    Ulgherait, Matt
    Delventhal, Rebecca
    Pantalia, Meghan M.
    Hill, Vanessa M.
    Zhou, Clarice G.
    McAllister, Sophie
    Chen, Anna
    Ziegenfuss, Jennifer S.
    Grueber, Wesley B.
    Canman, Julie C.
    Shirasu-Hiza, Mimi M.
    JOURNAL OF CELL BIOLOGY, 2017, 216 (03) : 595 - 605
  • [28] Fragile X mental retardation protein replacement restores hippocampal synaptic function in a mouse model of fragile X syndrome
    Zeier, Z.
    Kumar, A.
    Bodhinathan, K.
    Feller, J. A.
    Foster, T. C.
    Bloom, D. C.
    GENE THERAPY, 2009, 16 (09) : 1122 - 1129
  • [29] Phase II and III drugs for the treatment of fragile X syndrome
    Politte, Laura C.
    McDougle, Christopher J.
    EXPERT OPINION ON ORPHAN DRUGS, 2013, 1 (01): : 47 - 65
  • [30] Acamprosate rescues neuronal defects in the Drosophila model of Fragile X Syndrome
    Hutson, Russell L.
    Thompson, Rachel L.
    Bantel, Andrew P.
    Tessier, Charles R.
    LIFE SCIENCES, 2018, 195 : 65 - 70