Noncovalent Interactions by the Quantum Monte Carlo Method: Strong Influence of Isotropic Jastrow Cutoff Radii

被引:3
|
作者
Fanta, Roman [1 ]
Dubecky, Matus [1 ,2 ]
机构
[1] Univ Ostrava, Fac Sci, Dept Phys, Ostrava 70103, Czech Republic
[2] Slovak Univ Technol Bratislava, ATRI, Fac Mat Sci & Technol Trnava, Trnava 91724, Slovakia
关键词
WAVE-FUNCTIONS; SCHRODINGER-EQUATION; SET; CONVERGENCE; SIMULATION; ACCURACY; ENERGIES;
D O I
10.1021/acs.jctc.1c00467
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a paradigmatic example of a strong effect of Jastrow cutoff radii setup on the accuracy of noncovalent interaction energy differences within one-determinant Slater-Jastrow fixed-node diffusion Monte Carlo (1FNDMC) simulations using isotropic Jastrow terms and effective-core potentials. Analysis of total energies, absolute and relative errors, and local energy variance of energy differences vs the reference results suggests a simple procedure to marginalize the related biases. The presented data showcase improvements in dispersion- bounded systems within such a 1FNDMC method.
引用
收藏
页码:4242 / 4249
页数:8
相关论文
共 50 条
  • [41] Quantum Monte Carlo with non-local chiral interactions
    Roggero, A.
    Mukherjee, A.
    Pederiva, F.
    XIV CONFERENCE ON THEORETICAL NUCLEAR PHYSICS IN ITALY, 2014, 527
  • [42] Quantum Monte Carlo benchmarking of large noncovalent complexes in the L7 benchmark set
    Benali, Anouar
    Shin, Hyeondeok
    Heinonen, Olle
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (19):
  • [43] Quantum Monte Carlo method of localized molecular orbitals
    黄宏新
    曾跃
    王祥盛
    ChineseScienceBulletin, 1995, (11) : 912 - 915
  • [44] Released-phase quantum Monte Carlo method
    Jones, MD
    Ortiz, G
    Ceperley, DM
    PHYSICAL REVIEW E, 1997, 55 (05): : 6202 - 6210
  • [45] Simulation of quantum systems by the tomography Monte Carlo method
    Bogdanov, Yu. I.
    QUANTUM ELECTRONICS, 2007, 37 (12) : 1091 - 1096
  • [46] Quantum Monte Carlo method or attractive Coulomb potentials
    Kole, JS
    De Raedt, H
    PHYSICAL REVIEW E, 2001, 64 (01):
  • [47] Inchworm Monte Carlo Method for Open Quantum Systems
    Cai, Zhenning
    Lu, Jianfeng
    Yang, Siyao
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (11) : 2430 - 2472
  • [48] Released-phase quantum Monte Carlo method
    Phys Rev E., 5-B pt B (6202):
  • [49] The geophysical inverse method based on quantum Monte Carlo
    Wei Chao
    Li Xiao-Fan
    Zhang Mei-Gen
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2008, 51 (05): : 1494 - 1502
  • [50] Variance minimization for variational quantum Monte Carlo method
    黄宏新
    曹泽星
    刘述斌
    Progress in Natural Science, 1997, (05) : 39 - 43