Polygenic risk scores: effect estimation and model optimization

被引:1
作者
Zhao, Zijie [1 ]
Song, Jie [2 ]
Wang, Tuo [1 ]
Lu, Qiongshi [1 ,2 ,3 ]
机构
[1] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53726 USA
[2] Univ Wisconsin, Dept Stat, Madison, WI 53726 USA
[3] Univ Wisconsin, Ctr Demog Hlth & Aging, Madison, WI 53726 USA
关键词
GWAS; polygenic risk score; summary statistics; model selection; INCREASES ACCURACY; COMPLEX TRAITS; GENETIC RISK; PREDICTION; ASSOCIATION; DISEASE;
D O I
10.15302/J-QB-021-0238
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Polygenic risk score (PRS) derived from summary statistics of genome-wide association studies (GWAS) is a useful tool to infer an individual's genetic risk for health outcomes and has gained increasing popularity in human genetics research. PRS in its simplest form enjoys both computational efficiency and easy accessibility, yet the predictive performance of PRS remains moderate for diseases and traits. Results: We provide an overview of recent advances in statistical methods to improve PRS's performance by incorporating information from linkage disequilibrium, functional annotation, and pleiotropy. We also introduce model validation methods that fine-tune PRS using GWAS summary statistics. Conclusion: In this review, we showcase methodological advances and current limitations of PRS, and discuss several emerging issues in risk prediction research.
引用
收藏
页码:133 / 140
页数:8
相关论文
共 50 条
[1]   A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia [J].
Adhikari, Kaustubh ;
Mendoza-Revilla, Javier ;
Sohail, Anood ;
Fuentes-Guajardo, Macarena ;
Lampert, Jodie ;
Chacon-Duque, Juan Camilo ;
Hurtado, Malena ;
Villegas, Valeria ;
Granja, Vanessa ;
Acuna-Alonzo, Victor ;
Jaramillo, Claudia ;
Arias, William ;
Barquera Lozano, Rodrigo ;
Everardo, Paola ;
Gomez-Valdes, Jorge ;
Villamil-Ramirez, Hugo ;
Silva de Cerqueira, Caio C. ;
Hunemeier, Tabita ;
Ramallo, Virginia ;
Schuler-Faccini, Lavinia ;
Salzano, Francisco M. ;
Gonzalez-Jose, Rolando ;
Bortolini, Maria-Catira ;
Canizales-Quinteros, Samuel ;
Gallo, Carla ;
Poletti, Giovanni ;
Bedoya, Gabriel ;
Rothhammer, Francisco ;
Tobin, Desmond J. ;
Fumagalli, Matteo ;
Balding, David ;
Ruiz-Linares, Andres .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Genetic effects on gene expression across human tissues [J].
Aguet, Francois ;
Brown, Andrew A. ;
Castel, Stephane E. ;
Davis, Joe R. ;
He, Yuan ;
Jo, Brian ;
Mohammadi, Pejman ;
Park, Yoson ;
Parsana, Princy ;
Segre, Ayellet V. ;
Strober, Benjamin J. ;
Zappala, Zachary ;
Cummings, Beryl B. ;
Gelfand, Ellen T. ;
Hadley, Kane ;
Huang, Katherine H. ;
Lek, Monkol ;
Li, Xiao ;
Nedzel, Jared L. ;
Nguyen, Duyen Y. ;
Noble, Michael S. ;
Sullivan, Timothy J. ;
Tukiainen, Taru ;
MacArthur, Daniel G. ;
Getz, Gad ;
Management, Nih Program ;
Addington, Anjene ;
Guan, Ping ;
Koester, Susan ;
Little, A. Roger ;
Lockhart, Nicole C. ;
Moore, Helen M. ;
Rao, Abhi ;
Struewing, Jeffery P. ;
Volpi, Simona ;
Collection, Biospecimen ;
Brigham, Lori E. ;
Hasz, Richard ;
Hunter, Marcus ;
Johns, Christopher ;
Johnson, Mark ;
Kopen, Gene ;
Leinweber, William F. ;
Lonsdale, John T. ;
McDonald, Alisa ;
Mestichelli, Bernadette ;
Myer, Kevin ;
Roe, Bryan ;
Salvatore, Michael ;
Shad, Saboor .
NATURE, 2017, 550 (7675) :204-+
[3]  
Amariuta T., 2020, SILICO INTEGRATION 1
[4]   An atlas of genetic correlations across human diseases and traits [J].
Bulik-Sullivan, Brendan ;
Finucane, Hilary K. ;
Anttila, Verneri ;
Gusev, Alexander ;
Day, Felix R. ;
Loh, Po-Ru ;
Duncan, Laramie ;
Perry, John R. B. ;
Patterson, Nick ;
Robinson, Elise B. ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (11) :1236-+
[5]   Evidence for Polygenic Susceptibility to Multiple Sclerosis-The Shape of Things to Come [J].
Bush, William S. ;
Sawcer, Stephen J. ;
de Jager, Philip L. ;
Oksenberg, Jorge R. ;
McCauley, Jacob L. ;
Pericak-Vance, Margaret A. ;
Haines, Jonathan L. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 86 (04) :621-625
[6]   Developing and evaluating polygenic risk prediction models for stratified disease prevention [J].
Chatterjee, Nilanjan ;
Shi, Jianxin ;
Garcia-Closas, Montserrat .
NATURE REVIEWS GENETICS, 2016, 17 (07) :392-406
[7]   A Penalized Regression Framework for Building Polygenic Risk Models Based on Summary Statistics From Genome-Wide Association Studies and Incorporating External Information [J].
Chen, Ting-Huei ;
Chatterjee, Nilanjan ;
Landi, Maria Teresa ;
Shi, Jianxin .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 116 (533) :133-143
[8]   PRSice-2: Polygenic Risk Score software for biobank-scale data [J].
Choi, Shing Wan ;
O'Reilly, Paul F. .
GIGASCIENCE, 2019, 8 (07)
[9]   Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes [J].
Chung, Wonil ;
Chen, Jun ;
Turman, Constance ;
Lindstrom, Sara ;
Zhu, Zhaozhong ;
Loh, Po-Ru ;
Kraft, Peter ;
Liang, Liming .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Leveraging Multi-ethnic Evidence for Risk Assessment of Quantitative Traits in Minority Populations [J].
Coram, Marc A. ;
Fang, Huaying ;
Candille, Sophie I. ;
Assimes, Themistocles L. ;
Tang, Hua .
AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 101 (02) :218-226