A Mourre estimate for a Schrodinger operator on a binary tree

被引:27
作者
Allard, C [1 ]
Froese, N [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
D O I
10.1142/S0129055X00000575
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let G be a binary tree with vertices V and H be a Schrodinger operator acting on l(2)(V). A decomposition of the space l(2)(V) into invariant subspaces is exhibited yielding a conjugate operator A for use in the Mourre estimate. We show that for potentials q satisfying a first order difference decay condition, a Mourre estimate for H holds.
引用
收藏
页码:1655 / 1667
页数:13
相关论文
共 7 条
  • [1] ALLARD C, 1997, THESIS U BRIT COLUMB
  • [2] Cycon H.L., 1987, TEXTS MONOGRAPHS PHY
  • [3] On the spectral properties of discrete Schrodinger operators
    de Monvel, AB
    Sahbani, J
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (09): : 1145 - 1150
  • [4] DEMONVEL AB, IN PRESS REV MATH PH
  • [5] SPECTRAL-ANALYSIS OF 2ND-ORDER ELLIPTIC-OPERATORS ON NONCOMPACT MANIFOLDS
    FROESE, R
    HISLOP, P
    [J]. DUKE MATHEMATICAL JOURNAL, 1989, 58 (01) : 103 - 129
  • [6] GEORGESCU V, VIRIAL THEOREM QUANT
  • [7] Extended states in the Anderson model on the Bethe lattice
    Klein, A
    [J]. ADVANCES IN MATHEMATICS, 1998, 133 (01) : 163 - 184