REAL EIGENVALUES IN THE NON-HERMITIAN ANDERSON MODEL

被引:3
|
作者
Goldsheid, Ilya [1 ]
Sodin, Sasha [1 ,2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会;
关键词
Sample; non-Hermitian; Anderson model; random Schrodinger; TIGHT-BINDING MODEL; DENSITY-OF-STATES; RANDOM MATRICES; LARGE DISORDER; LOCALIZATION; BERNOULLI; DELOCALIZATION; PRODUCTS; THEOREMS; SPACINGS;
D O I
10.1214/18-AAP1383
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The eigenvalues of the Hatano-Nelson non-Hermitian Anderson matrices, in the spectral regions in which the Lyapunov exponent exceeds the non-Hermiticity parameter, are shown to be real and exponentially close to the Hermitian eigenvalues. This complements previous results, according to which the eigenvalues in the spectral regions in which the non-Hermiticity parameter exceeds the Lyapunov exponent are aligned on curves in the complex plane.
引用
收藏
页码:3075 / 3093
页数:19
相关论文
共 50 条
  • [31] Spectral theory of sparse non-Hermitian random matrices
    Metz, Fernando Lucas
    Neri, Izaak
    Rogers, Tim
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (43)
  • [32] Eigenvalues bifurcating from the continuum in two-dimensional potentials generating non-Hermitian gauge fields
    Borisov, D. I.
    Zezyulin, D. A.
    ANNALS OF PHYSICS, 2023, 459
  • [33] Non-Hermitian photonic lattices: tutorial
    Wang, Qiang
    Chong, Y. D.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (06) : 1443 - 1466
  • [34] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04) : 1886 - 1916
  • [35] Simplicity of Eigenvalues in the Anderson Model
    Abel Klein
    Stanislav Molchanov
    Journal of Statistical Physics, 2006, 122 (1) : 95 - 99
  • [36] Exceptional topology of non-Hermitian systems
    Bergholtz, Emil J.
    Budich, Jan Carl
    Kunst, Flore K.
    REVIEWS OF MODERN PHYSICS, 2021, 93 (01)
  • [37] Simplicity of Eigenvalues in the Anderson Model
    Klein, Abel
    Molchanov, Stanislav
    JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (01) : 95 - 99
  • [38] Outlier eigenvalues for non-Hermitian polynomials in independent i.i.d. matrices and deterministic matrices
    Belinschi, Serban
    Bordenave, Charles
    Capitaine, Mireille
    Cebron, Guillaume
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [39] Invertibility of sparse non-Hermitian matrices
    Basak, Anirban
    Rudelson, Mark
    ADVANCES IN MATHEMATICS, 2017, 310 : 426 - 483
  • [40] Topological Phases of Non-Hermitian Systems
    Gong, Zongping
    Ashida, Yuto
    Kawabata, Kohei
    Takasan, Kazuaki
    Higashikawa, Sho
    Ueda, Masahito
    PHYSICAL REVIEW X, 2018, 8 (03):