REAL EIGENVALUES IN THE NON-HERMITIAN ANDERSON MODEL

被引:3
|
作者
Goldsheid, Ilya [1 ]
Sodin, Sasha [1 ,2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会;
关键词
Sample; non-Hermitian; Anderson model; random Schrodinger; TIGHT-BINDING MODEL; DENSITY-OF-STATES; RANDOM MATRICES; LARGE DISORDER; LOCALIZATION; BERNOULLI; DELOCALIZATION; PRODUCTS; THEOREMS; SPACINGS;
D O I
10.1214/18-AAP1383
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The eigenvalues of the Hatano-Nelson non-Hermitian Anderson matrices, in the spectral regions in which the Lyapunov exponent exceeds the non-Hermiticity parameter, are shown to be real and exponentially close to the Hermitian eigenvalues. This complements previous results, according to which the eigenvalues in the spectral regions in which the non-Hermiticity parameter exceeds the Lyapunov exponent are aligned on curves in the complex plane.
引用
收藏
页码:3075 / 3093
页数:19
相关论文
共 50 条
  • [21] Comparing Hermitian and Non-Hermitian Quantum Electrodynamics
    Southall, Jake
    Hodgson, Daniel
    Purdy, Robert
    Beige, Almut
    SYMMETRY-BASEL, 2022, 14 (09):
  • [22] Dynamical Stability in a Non-Hermitian Kicked Rotor Model
    Zhao, Wenlei
    Zhang, Huiqian
    SYMMETRY-BASEL, 2023, 15 (01):
  • [23] Non-Hermitian quantum rings
    Longhi, Stefano
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [24] Non-Hermitian Aubry-Andre model with power-law hopping
    Xu, Zhihao
    Xia, Xu
    Chen, Shu
    PHYSICAL REVIEW B, 2021, 104 (22)
  • [25] Hilbert space fragmentation imposed real spectrum of non-Hermitian systems
    Ghosh, Somsubhra
    Sengupta, K.
    Paul, Indranil
    PHYSICAL REVIEW B, 2024, 109 (04)
  • [26] Non-Hermitian Hartman Effect
    Longhi, Stefano
    ANNALEN DER PHYSIK, 2022, 534 (10)
  • [27] Real-complex quantum phase transition in non-Hermitian disorder-free systems
    Wang, Way
    Ma, Zhongshui
    PHYSICAL REVIEW B, 2022, 106 (11)
  • [28] Transition between Hermitian and non-Hermitian Gaussian ensembles
    Bohigas, O.
    Pato, M. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (11)
  • [29] Supermetal-insulator transition in a non-Hermitian network model
    Liu, Hui
    You, Jhih-Shih
    Ryu, Shinsei
    Fulga, Ion Cosma
    PHYSICAL REVIEW B, 2021, 104 (15)
  • [30] Topological enhancement of nonnormality in non-Hermitian skin effects
    Nakai, Yusuke O.
    Okuma, Nobuyuki
    Nakamura, Daichi
    Shimomura, Kenji
    Sato, Masatoshi
    PHYSICAL REVIEW B, 2024, 109 (14)