共 50 条
REAL EIGENVALUES IN THE NON-HERMITIAN ANDERSON MODEL
被引:3
|作者:
Goldsheid, Ilya
[1
]
Sodin, Sasha
[1
,2
]
机构:
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金:
欧洲研究理事会;
关键词:
Sample;
non-Hermitian;
Anderson model;
random Schrodinger;
TIGHT-BINDING MODEL;
DENSITY-OF-STATES;
RANDOM MATRICES;
LARGE DISORDER;
LOCALIZATION;
BERNOULLI;
DELOCALIZATION;
PRODUCTS;
THEOREMS;
SPACINGS;
D O I:
10.1214/18-AAP1383
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
The eigenvalues of the Hatano-Nelson non-Hermitian Anderson matrices, in the spectral regions in which the Lyapunov exponent exceeds the non-Hermiticity parameter, are shown to be real and exponentially close to the Hermitian eigenvalues. This complements previous results, according to which the eigenvalues in the spectral regions in which the non-Hermiticity parameter exceeds the Lyapunov exponent are aligned on curves in the complex plane.
引用
收藏
页码:3075 / 3093
页数:19
相关论文