REAL EIGENVALUES IN THE NON-HERMITIAN ANDERSON MODEL

被引:3
|
作者
Goldsheid, Ilya [1 ]
Sodin, Sasha [1 ,2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会;
关键词
Sample; non-Hermitian; Anderson model; random Schrodinger; TIGHT-BINDING MODEL; DENSITY-OF-STATES; RANDOM MATRICES; LARGE DISORDER; LOCALIZATION; BERNOULLI; DELOCALIZATION; PRODUCTS; THEOREMS; SPACINGS;
D O I
10.1214/18-AAP1383
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The eigenvalues of the Hatano-Nelson non-Hermitian Anderson matrices, in the spectral regions in which the Lyapunov exponent exceeds the non-Hermiticity parameter, are shown to be real and exponentially close to the Hermitian eigenvalues. This complements previous results, according to which the eigenvalues in the spectral regions in which the non-Hermiticity parameter exceeds the Lyapunov exponent are aligned on curves in the complex plane.
引用
收藏
页码:3075 / 3093
页数:19
相关论文
共 50 条
  • [1] Regular Spacings of Complex Eigenvalues in the One-Dimensional Non-Hermitian Anderson Model
    Ilya Ya. Goldsheid
    Boris A. Khoruzhenko
    Communications in Mathematical Physics, 2003, 238 : 505 - 524
  • [2] Level statistics of real eigenvalues in non-Hermitian systems
    Xiao, Zhenyu
    Kawabata, Kohei
    Luo, Xunlong
    Ohtsuki, Tomi
    Shindou, Ryuichi
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [3] Non-Hermitian spectra and Anderson localization
    Molinari, Luca G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (26)
  • [4] Non-Hermitian Anderson Transport
    Weidemann, Sebastian
    Kremer, Mark
    Longhi, Stefano
    Szameit, Alexander
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [5] Single parameter scaling in the non-Hermitian Anderson model
    Khan, Niaz Ali
    Muhammad, Saz
    Sajid, Muhammad
    Saud, Shah
    PHYSICA SCRIPTA, 2022, 97 (07)
  • [6] Eigenvalues of non-Hermitian Fibonacci Hamiltonians
    Domínguez-Adame, F
    PHYSICA B-CONDENSED MATTER, 2001, 307 (1-4) : 247 - 250
  • [7] Unifying the Anderson transitions in Hermitian and non-Hermitian systems
    Luo, Xunlong
    Xiao, Zhenyu
    Kawabata, Kohei
    Ohtsuki, Tomi
    Shindou, Ryuichi
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [8] Robust Anderson transition in non-Hermitian photonic quasicrystals
    Longhi, Stefano
    OPTICS LETTERS, 2024, 49 (05) : 1373 - 1376
  • [9] Eigenvalues of large chiral non-Hermitian random matrices
    Chang, Shuhua
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [10] Statistical properties of eigenvalues of the non-Hermitian Su-Schrieffer-Heeger model with random hopping terms
    Mochizuki, Ken
    Hatano, Naomichi
    Feinberg, Joshua
    Obuse, Hideaki
    PHYSICAL REVIEW E, 2020, 102 (01)